|
|
Screening, Identification and Lignin-degradation Characteristics of Bacillus amyloliquefaciens MN-13 |
ZHANG Ya-Ru1, REN Jing1, ZHANG Wei-Tao2, WANG Shu-Xiang1, WANG Shuo1, MA Fei-Yu1, LI Shu-Na1, LI Hong-Ya1,* |
1 College of Life Sciences, Hebei Agricultural University, Baoding 071000, China; 2 Hebei Animal Husbandry General Station, Shijiazhuang 050035, China |
|
|
Abstract Screening lignin-degrading bacteria and studying its degradation properties could realize the efficient use of lignocellulosic, and provide high value-added raw materials for the chemical industry, and alleviate the contradiction of shortage of raw materials. In order to obtain more excellent and applicable bacteria for the biodegradation of lignin, a Bacillus sp. strain named MN-13 was screened from fresh manure of Bos taurus via heating enrichment, decolorization of aniline blue in plate cultivation combination with detection of enzyme activity. Strain MN-13 decolorized significantly aniline blue, oxidized Mn2+ and veratryl alcohol. According to morphology, physiological and biochemical characteristics, sequence analysis of 16S rDNA and gyrB gene, strain MN-13 was identified as Bacillus amyloliquefaciens (GenBank No. KP292553). Lignin degradation characteristics of strain MN-13 showed that this strain could efficiently degrade lignin in corn stalks with lignin-degradation rate of 44.8% and NDF-degradation rate of 29.0% after 24 d of inoculation. In the process of lignin-degradation mediated by strain MN-13, the ligninolytic peroxidase which was similar to lignin peroxidase (LiP) and manganese peroxidase (MnP) could be produced and the stage of highest enzyme activity was consistent with the period of the maximum lignin-degradation amplitude. Gas chromatography-mass spectrometry (GC-MS) analysis results of lignin degradation products showed that strain MN-13 could degrade lignin into H, G and S phenols by the fission of β-O-4, Cα-Cβ and Cβ-Cγ bonds and, oxidation of Cα and Cγ. Screening of B. amyloliquefaciens MN-13 provided a new ligninolytic microorganism which would enrich the bacteria resource capable of degrading lignin. Meanwhile, lignin degradation characteristics of B. amyloliquefaciens MN-13 would provide a reference for further application of Bacillus sp. strains in the lignin-degradation.
|
Received: 16 December 2020
|
|
Corresponding Authors:
*lihy77@sina.com
|
|
|
|
[1] 布坎南R E, 吉本斯N E.1984.伯杰细菌鉴定手册[M].北京: 科学出版社, pp.729-740. (Buchanan R E, Gibbons N E.1984.Bergey's Manual of Systemaic Bacteriology[M].Beijing: Science Press, pp.729-740.) [2] 程丽娟, 薛泉宏.2012.微生物学实验技术[M].北京: 科学出版社, pp.1-320. (Cheng L J, Xue Q H.2012.Laboratory Manual of Microbiology[M].Beijing: Science Press, pp.1-320.) [3] 东秀珠, 蔡妙英.2001.常见细菌系统鉴定手册[M].北京: 科学出版社, pp.1-425. (Dong X Z, Cai M Y.2001.Systematic Identification Mannual of Commen Bacteria[M].Beijing: Science Press, pp.1-425.) [4] 李红亚, 李术娜, 王树香, 等.2014.产芽孢木质素降解菌MN-8的筛选及其对木质素的降解[J].中国农业科学, 47(2): 324-333. (Li H Y, Li S N, Wang S X, et al.2014.Screening, identification of lignin-degradating Bacillus MN-8 and its characteristics in degradation of maize straw lignin[J].Scientia Agricultura Sinica, 47(2): 324-333.) [5] 潘晓辉.2007.微波预处理玉米秸秆的工艺研究[D].硕士学位论文, 哈尔滨工业大学, 导师: 冯玉杰, pp.1-49. (Pan X H.2007.Study on microwave pretreatment of corn stover[D].Thesis for M.S., Harbin Institute of Technology, Supevisor: Feng Y J, pp.1-49.) [6] 王东琦, 苏振铎, 杜文静, 等.2015.木质素磺酸盐好氧降解菌的筛选及降解特性[J].应用与环境生物学报, 21(6): 1019-1024. (Wang D Q, Su Z D, Du W J, et al.2015.The isolation and degradation characteristics of lignosulfonate-degrading aerobic bacterial strains[J].Chinese Journal of Applied and Environmental Biology, 21(6): 1019-1024.) [7] 王加启, 于建国, 吴克谦, 等.2007.GB/T 20806-2006, 饲料中中性洗涤纤维(NDF)的测定[S].北京: 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. (Wang J Q, Yu J G, Wu K Q, et al.2007.GB/T 20806-2006, Determination of neutral detergent fiber in feedstuffs[S].Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the Peoples Republic of China (AQSIQ) and Standardization Administration.) [8] 王全, 王会, 李红亚, 等.2016.一株高效木质素降解菌株LG-1的筛选、鉴定及酶活测定[J].饲料工业, 37(12): 47-52. (Wang Q, Wang H, Li H Y, et al.2016.Isolation, identification and enzyme activity determination of a high effective lignin-degradation fungi LG-1[J].Feed Industry, 37(12): 47-52.) [9] 王仁佑, 曾光明, 郁红艳, 等.2008.木质素的微生物降解机制[J].微生物学杂志, 28(3): 59-63. (Wang R Y, Zeng G M, Yu H Y, et al.2008.Lignin degradation mechanism by microbes[J].Journal of Microbiology, 28(3): 59-63.) [10] 张佩佩.2017.细菌Comamonas serinivorans C35对木质素的降解及其代谢机制初步研究[D].硕士学位论文, 江苏大学, 导师: 朱道辰, pp.1-74. (Zhang P P.2017.Characterization and metabolic mechanism of lignin biodegration by Comamonas serinivorans C35[D].Thesis for M.S., Jiangsu University, Supervisor: Zhu D C, pp.1-74.) [11] Archibald F S.1992.A new assay for lignin-type peroxidase employing the dye Azure-B[J].Applied and Environmental Microbiology, 58(9): 3110-3116. [12] Chai L Y, Chen Y H, Tang C J, et al.2014.Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp.B-9[J].Applied Microbiology & Biotechnology, 98(4): 1907-1912. [13] Chen Y H, Chai L Y, Zhu Y H, et al.2012.Biodegradation of kraft lignin by a bacterial strain Comamonas sp.B-9 isolated from eroded bamboo slips[J].Journal of Applied Microbiology, 112(5): 900-906. [14] Colpa D I, Fraaije M W, Bloois E.2014.DyP-type peroxidases: A promising and versatile class of enzymes[J].Journal of Industrial Microbiology & Biotechnology, 41(1): 1-7. [15] Dos Santos Melo-Nascimento A O, Mota Moitinho Sant Anna B, Gonçalves C C, et al.2020.Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1[J].PLOS ONE, 15(12): e0243739. [16] Evstigneyev E I, Kalugina A V, Ivanov A Y, et al.2017.Contents of α-O-4 and β-O-4 bonds in native lignin and isolated lignin preparations[J].Journal of Wood Chemistry and Technology, 37(4): 294-306. [17] Hofrichter M, Fritsche W.1997.Depolymerization of low-rank coal by extracellular fungal enzyme systems Ⅱ: The lignindytic enzymes of the coal-humic-acid-depolymerizing fungus Nematoloma frowardii b19[J].Applied Microbiology & Biotechnology, 47(4): 419-424. [18] Kamimura N, Sakamoto S, Mitsuda N, et al.2019.Advances in microbial lignindegradation and its applications[J].Current Opinion in Biotechnology, 56(4): 179-186. [19] Kirk T K, Tien M.1983.Lignin-Degrading enzyme from the Hymenomycete Phenerochaete chrysosporium burds[J].Applied Biochemistry & Biotechnology, 221(4): 661-663. [20] Loredano P, Fabio T, Elena R.2015.Lignin-degrading enzymes[J].The FEBS Journal, 282(7): 1190-1213. [21] Martin J P, Haider K.2018.Microbial Degradation and Stabilization of 14C-labeled Lignins, Phenols, and Phenolic Polymers in Relation to Soil Humus Formation[M].Lignin Biodegradation: Microbiology, Chemistry, and Potential Applications, pp.77-100. [22] Masai E, Katayama Y, Fukuda M.2007.Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds[J].Bioscience Biotechnology and Biochemistry, 71(1): 1-15. [23] Max B, Carballo J, Cortés S, et al.2012.Decarboxylation of ferulic acid to 4-vinyl guaiacol by Streptomyces setonii[J].Applied Biochemistry & Biotechnology, 166(2): 289-299. [24] Mei J F, Shen X B, Gang L P, et al.2020.A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently[J].Bioresource Technology, 310(8): 123445. [25] Min K, Gong G, Woo H M, et al.2015.A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer[J].Scientific Reports, 5(1): 8245. [26] Raj A, Reddy M M K, Chandra R.2007.Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp[J].International Biodeterioration & Biodegradation, 59(4): 292-296. [27] Santos A, Mendes S, Brissos V, et al.2014.New dye-decolorizing Peroxidases from Bacillus subtilis and Pseudomonas putida MET94: Towards biotechnological applications[J].Applied Microbiology & Biotechnology, 98(5): 2053-2065. [28] Sapapporn N, Chaijamrus S, Chatdumrong W, et al.2019.Degradation and polymerization of black liquor lignin using Bacillus sp.isolated from a pulp mill[J].Bioresources, 14(1): 1049-1076. [29] Snchez C.2009.Lignocellulosic residues: biodegradation and bioconversion by fungi[J].Biotechnology Advances, 27(2): 185-194. [30] Taylor C R, Hardiman E M, Ahmad M, et al.2012.Isolation of bacterial strains able to metabolize lignin from screening of environmental samples[J].Journal of Applied Microbiology, 113(3): 521-530. [31] Welker N E, Campbell L L.1967.Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis[J].Journal of Bacteriology, 94(4): 1124-1127. [32] Yang J, Gao T G, Zhang Y R, et al.2019.Degradation of the phenolic β-ether lignin model dimer and dyes by dye-decolorizing peroxidase from Bacillus amyloliquefaciens[J].Biotechnology Letters, 41(8-9): 1015-1021. [33] Zainith S, Purchase D, Saratale G D, et al.2019.Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential[J].3 Biotech, 9(3): 92. [34] Zhu D C, Zhang P P, Xie C X, et al.2017.Biodegradation of alkaline lignin by Bacillus ligniniphilus L1[J].Biotechnology for Biofuels, 10(1): 44. |
[1] |
LIU Guo-Xia, TAN Qing-Qing, QI Jun-Shan, WANG Fu-Yu, CHEN Xue-Yan, FAN Yang-Yang, HU Yue, BU Xun, ZHANG Quan-Fang. Rapid Identification of Main Pathogen Fusarium pseudograminearum of Wheat Crown Rot Using Site-specific PCR Based on EF-1α Sequence[J]. 农业生物技术学报, 2021, 29(5): 985-994. |
|
|
|
|