|
|
Cloning and Expression Analysis of Body Colour-related Gene mitfa in Rainbow Trout (Oncorhynchus mykiss) |
WU Shen-Ji1, HUANG Jin-Qiang1,*, LI Yong-Juan2, ZHANG Qian1, PAN Yu-Cai1, WANG Xiao-Lan1 |
1 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 College of Science, Gansu Agricultural University, Lanzhou 730070, China |
|
|
Abstract Microphtalmia-associated transcription factor a gene (mitfa) plays an important role in the formation of animal body colour. This study was conducted to explore the regulatory role of mitfa gene in the body colour variation between wild-type (WT) and yellow mutant (YM) rainbow trout (Oncorhynchus mykiss). The full-length sequence of mitfa gene of rainbow trout was obtained by rapid-amplification of cDNA ends (RACE) technique, and the bioinformatics analysis was performed. Furthermore, qRT-PCR was used to investigate the expression levels of mitfa in the different developmental stages and various tissues of WT and YM rainbow trout, respectively. The full-length cDNA of mitfa (GenBank No. MT813117) was 2 700 bp containing 114 bp 5'UTR, 1 374 bp 3'UTR, and 1 212 bp ORF encoding 403 amino acids. Sequence analysis showed that Mitfa protein sequence was more conservative in fishes than that in other vertebrates and the basic helix-loop-helix-leucine zipper (bHLHZip) structural domain was highly conserved among all vertebrates. These results were further confirmed by phylogenetic analysis. qRT-PCR analysis revealed that mitfa expressed at different levels during embryo and post hatch stages, and higher expression levels were detected at the fertilized-stage, 4-cell, 16-cell and multi-cell, which were significantly higher than that of other stages (P<0.05). Moreover, there were extremely significant differences (P<0.01) in the expression of mitfa gene at the same stages between WT and YM rainbow trout, e.g., at the fertilized-stage, 16-cell, multi-cell, blastula, somites, heartbeating, 3 dph (days post hatch), 5 dph, 7 dph, 10 dph, 1 M (month post hatch) and 12 M dorsal skin. mitfa gene expressed in all kinds of tissues of 12 M WT and YM rainbow trout, which expressed the highest amount in dorsal skin (P<0.05), it also highly expressed in ventral skin and muscle, dorasl muscle and eye, but relatively lower in other tissues. The above results indicated that the mitfa gene might be involved in the formation of pigment cells in rainbow trout and closely related to the body colour variation. The results of this study provide basic data for the molecular regulation mechanism of body colour variation and the genetic improvement of body colour in rainbow trout.
|
Received: 13 August 2020
Published: 01 April 2021
|
|
Corresponding Authors:
* huangjq@gsau.edu.cn
|
|
|
|
[1] 范云鹏, 赵韩, 罗世民, 等. 2019. 花鲫早期体色发育和几个体色相关基因在不同鲫的表达分析[J]. 激光生物学报, 28(4): 343-352. (Fan Y P, Zhao H, Luo S M, et al.2019. Observation on body colour development in red-white crucian carp and expression analysis of pigment genes in different color crucian carp[J]. Acta Laser Biology Sinica, 28(4): 343-352.) [2] 胡建尊. 2013. 瓯江彩鲤体色相关基因MC1R的克隆、表达和TYR的选择压力分析[D]. 硕士学位论文, 上海海洋大学, 导师: 王成辉, pp. 1-36. (Hu J Z.2013. Clong, expression for pigmentation genes-MC1R and selection pressure analysis for pigmentation genes-TYR in Oujiang color common carp[D]. Thesis for M.S., Shanghai Ocean University, Supervisor: Wang C H, pp. 1-36.) [3] 黄永政. 2008. 鱼类体色研究进展[J]. 水产学杂志, 21(1): 89-94. (Huang Y Z.2008. Research progress of fish body colour[J]. Chinese Journal of Fisheries, 21(1): 89-94.) [4] 林金杏, 冯丽萍, 胡建华, 等. 2017. 斑马鱼鳍和鳞片色素细胞的显微观察[J]. 实验动物与比较医学, 37(2): 94-101. (Lin J X, Feng L P, Hu J H, et al.2017. Microscopical observation on pigment cells in fins and scales of zebrafish[J]. Laboratory Animal and Comparative Medicine, 37(2): 94-101.) [5] 李康乐. 2014. 瓯江彩鲤体色相关基因Sox10、Agouti、Tyrp1、Dct的分子克隆与表达分析[D]. 硕士学位论文, 上海海洋大学, 导师: 王成辉, pp. 35-47. (Li K L.2014. Molecular cloning and expression analysis of pigmentation-related genes, Sox10, Agouti, Tyrp1 and Dct, in Oujiang color common carp, Cyprinus carpio var. color[D]. Thesis for M.S., Shanghai Ocean University, Supervisor: Wang C H, pp. 35-47.) [6] 李小兵, 郑曙明, 吴青. 2012. 曼龙鱼色素细胞的显微观察[J]. 四川动物, 31(4): 538-541. (Li X B, Zheng S M, Wu Q.2012. Microscopic observation on chromatophores of Trichogaster trichopterus[J]. Sichuan Journal of Zoology, 31(4): 538-541.) [7] 刘栋, 朱文元. 2002. MITF与黑素细胞的发育、分化和功能调节[J]. 细胞生物学杂志, 24(6): 346-351. (Liu D, Zhu W Y.2002. MITF and melanocyte development, differentiation and functional regulation[J]. Journal of Cell Biology, 24(6): 346-351.) [8] 庞小磊. 2018. xdh基因在锦鲤体色形成中的功能研究[D]. 硕士学位论文, 河南师范大学, 导师: 田雪, pp. 26-28. (Pang X L.2018. The functional study of xdh gene in body color formation of the Japanese ornamental carp (Cyprinus carpio var. kio)[D]. Thesis for M.S., Henan Normal University, Supervisor: Tian X, pp. 26-28.) [9] 田雪, 庞小磊, 王良炎, 等. 2017. MITFa及TYR基因在红色锦鲤体色发生不同阶段的表达分析[J]. 水产科学, 36(2): 197-201. (Tian X, Pang X L, Wang L Y, et al.2017. Expression of MITFa and TYR gene in body color formation in red color Koi carp Cyprinus carpio at different stages[J]. Fisheries Science, 36(2): 197-201.) [10] 王良炎. 2017. 黄河鲤体色发生观察及mitfa和tyr基因cDNA的克隆与组织表达研究[D]. 硕士学位论文, 河南师范大学, 导师: 李学军, pp. 5. (Wang L Y.2017. The observation of body color formation and mitfa and tyr gene cDNA cloning and tissue expression study in yellow river carp Cyprinus carpio haematopterus[D]. Thesis for M.S., Henan Normal University, Supervisor: Li X J, pp. 5.) [11] 文胜. 2014. mitfa基因在观赏鱼体色形成中的功能研究[D]. 硕士学位论文, 湖南师范大学, 导师: 肖亚梅, pp. 11-15. (Wen S.2014. Involvement of mitfa gene in body color formation of the ornamental fish[D]. Thesis for M.S., Hunan Normal University, Supervisor: Xiao Y M, pp. 11-15.) [12] 辛清武, 李丽, 缪中纬, 等. 2018. 莆田黑鸭MITF基因表达特性及其与黑色素沉积的关联分析[J]. 农业生物技术学报, 26(11): 1928-1937. (Xin Q W, Li L, Miao Z W, et al.2018. Expression of MITF gene in putian black duck (Anas anas domesticus) and its association with melanin deposition[J]. Journal of Agricultural Biotechnology, 26(11): 1928-1937.) [13] 谢光跃, 姜勋平, 刘桂琼. 2014. 黑色素合成的细胞基础及影响因素[J]. 畜牧与兽医, 46(1): 109-112. (Xie G Y, Jiang X P, Liu G Q.2014. Cellular basis and influencing factors of melanin synthesis[J]. Animal Husbandry and Veterinary Medicine, 46(1): 109-112.) [14] 于道德. 2020. 鱼类色素细胞及其生态学意义概述[J]. 广西科学院学报, 36(2): 117-123. (Yu D D.2020. Summary of fish pigment cells and their ecological significance[J]. Journal of Guangxi Academy of Sciences, 36(2): 117-123.) [15] 杨鹏欣, 刘蕾, 马来记, 等. 2017. 黑素合成相关MITF基因及其表达研究概况[J]. 日用化学工业, 47(1): 46-51. (Yang P X, Liu L, Ma L J, et al.2017. Situation of research work with respect to melanogenesis-associated MITF gene and its expression[J]. China Surfactant Detergent and Cosmetics, 47(1): 46-51.) [16] 张浩, 徐超, 宋兴超, 等. 2016. 黑色素细胞调控小眼畸形相关转录因子的研究进展[J]. 畜牧与兽医, 48(8): 113-117. (Zhang H, Xu C, Song X C, et al.2016. Advances in melanoma cell regulation of gene MITF[J]. Animal Husbandry and Veterinary Medicine, 48(8): 113-117.) [17] 张艳苹. 2016. 红鳍笛鲷皮肤转录组分析及体色相关基因克隆、表达与进化研究[D]. 硕士学位论文, 湖南师范大学, 导师: 刘楚吾, pp. 52-75. (Zhang Y P.2016. Study on skin transcriptome of Crimson Snapper (Lutjanus erythropterus), and their pigment genes related cloning, expression and evolution analysis[D]. Thesis for M.S., Hunan Normal University, Supervisor: Liu C W, pp. 52-75.) [18] 郑嫩珠, 李丽, 辛清武, 等. 2015. 酪氨酸酶(TYR)、小眼畸形相关转录因子(MITF)和刺鼠信号蛋白(ASIP)基因对白绒乌骨鸡黑色素沉积的遗传效应[J]. 农业生物技术学报, 23(8): 1076-1083. (Zheng N Z, Li L, Xin Q W, et al.2015. (Genetic effect of tyrosinase (TYR), microphthalmia-associated transcription factor (MITF) and agouti signaling protein (ASIP) geneson melanin deposition of white silky fowl (Gallus gallus domesticus Brisson)[J]. Journal of Agricultural Biotechnology, 23(8): 1076-1083.) [19] Bauer G L, Praetorius C, Bergsteinsdóttir K, et al.2009. The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue[J]. Genetics, 183(2): 581-594. [20] Braasch I, Liedtke D, Volff J N, et al.2009. Pigmentary function and evolution of tyrp1 gene duplicates in fish[J]. Pigment Cell and Melanoma Research, 22(6): 839-850. [21] Béjar J, Hong Y, Schartl M.2003. Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes[J]. Development, 130(26): 6545-6553. [22] Curran K, Lister J A, Kunkel G R, et al.2010. Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest[J]. Developmental Biology, 344(1): 107-118. [23] Hattori R S, Yoshinaga T T, Butzge A J, et al.2020. Generation of a white-albino phenotype from cobalt blue and yellow-albino rainbow trout (Oncorhynchus mykiss): Inheritance pattern and chromatophores analysis[J]. PLOS ONE, 15(1): e0214034. [24] Hultman K A, Johnson S L.2010. Difference contribution of direct-developing and stem cell-derived melanocytes to the zabrafish larval pigment pattern[J]. Developmental Biology, 337(2): 425-431. [25] Inaba M, Yamanaka H, Kondo S, et al.2012. Pigment pattern formation by contact-dependent depolarization[J]. Science, 335(6069): 677. [26] Johnson S L, Nguyen A N, Lister J A.2011. mitfa is required at multiple stages of melanocyte differentiation but not to establish the melanocyte stem cell[J]. Developmental Biology, 350(2): 405-413. [27] Kelsh R N.2004. Genetics and evolution of pigment patterns in fish[J]. Pigment Cell Research, 17(4): 326-336. [28] Lee S W, Kim J H, Song H, et al.2019. Luteolin 7-sulfate attenuates melanin synthesis through inhibition of CREB- and MITF-mediated tyrosinase expression[J]. Antioxidants (Basel, Switzerland), 8(4): 87. [29] Liu J H, Wen S, Luo C, et al.2015. Involvement of the mitfa gene in the development of pigment cell in Japanese ornamental (Koi) carp (Cyprinus carpio L.)[J]. Genetics and Molecular Research, 14(1): 2775-2784. [30] Li M, Zhu F, Hong Y.2013. Differential evolution of duplicated medakafish mitf genes[J]. International Journal of Biological Sciences, 9(5): 496-508. [31] Lister J A, Robertson C P, Lepage T, et al.1999. Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate[J]. Development, 126(17): 3757-3767. [32] Matthews S A.1931. Observasions on pigment migration within the fish melanophore[J]. Journal of Experimental Zoology, 58(1): 471-486. [33] Ooishi R, Shirai M, Funaba M, et al.2012. Microphtalmia associated transcription factor is required for mature myotube formation[J]. Biochimica et Biophysica Acta, 1820(2): 76. [34] Singh A P, Dinwiddle A, Mahalwar P, et al.2016. Pigment cell progenitors in zebrafish remain multipotent through metamor-phosis[J]. Developmental Cell, 38(3): 316-330. [35] Tu S, Johnson S L.2010. Clonal analyses reveal roles of organ founding stem cells, melanocyte stem cells and melanoblasts in establishment, growth and regeneration of the adult zebrafish fin[J]. Development, 137(23): 3931-3939. [36] Zhang X T, Wei K J, Chen Y Y, et al.2018. Molecular cloning and expression analysis of tyr and tyrp1 genes in normal and albino yellow catfish Tachysurus fulvidraco[J]. Journal of Fish Biology, 92(4): 979-998. [37] Zhang Y, Liu J, Fu W, et al.2017a. Comparative transcriptome and DNA methylation analyses of the molecular mechanisms underlying skin color variations in Crucian carp (Carassius carassius L.)[J]. BMC Genetics, 18(1): 95. [38] Zhang Y, Liu J, Peng L, et al.2017b. Comparative transcriptome analysis of molecular mechanism underlying gray-to-red body color formation in red crucian carp (Carassius auratus, red var.)[J]. Fish Physiology and Biochemistry, 43(5): 1387-1398. [39] Zhu W, Wang L, Dong Z, et al.2016. Comparative transcriptome analysis identifies candidate genes related to skin color differentiation in red tilapia[J]. Scientific Reports, 6: 31347. |
|
|
|