|
|
Study on Gut Microbiome Diversity of Bamei Piglets (Sus scrofa) at Different Ages |
JIN Ji-Peng1,2, ZHANG Li-Ping2, JIA Jian-Lei1,*, CHEN Qian1, MA Cun-Ming3, XU Fa-Fang3, LIU Rui4, SUN Hui5 |
1 College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; 2 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 3 Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu 810016, China; 4 Animal Husbandry and Veterinary Station of Tielu of Lintong District in Xi'an City, Lintong 710600, China; 5 Animal Husbandry and Veterinary Station of Xuyang of Lintong District in Xi'an City, Lintong 710600, China |
|
|
Abstract The growth and development of the gastrointestinal tract of suckling piglets directly affect the survival rate of piglets, and the survival rate of piglets is the main factor that determines the production efficiency of the pig industry. To explore the development of intestinal microbial community in Bamei piglets (Sus scrofa) at different ages, fecal samples of Bamei suckling piglets were collected in 1~3 d (colostrum, COL) and 8~10 d (ordinary milk, ORD), and the piglets grew up and were healthy under the same conditions. Microbial data were analyzed using the 16S rRNA V3+V4 hypervariable region second generation Illumina HiSeq2500 sequencing method. Relative abundance of Lactobacillus and Fusobacterium in 1~3 d were significantly higher than those in 8~10 d (P<0.05). The milk intake in 8~10 d was significantly higher than that in 1~3 d (P<0.05), and the milk intake was strongly negatively correlated with Lactobacillus and Fusobacterium (r<-0.6, P<0.01). KEGG function predicted that the environment adaptation pathway, excretion system pathway, immune system pathway, and the amino acid metabolism pathway were significantly enriched in 8~10 d (P<0.05). Understanding the changes of intestinal flora of piglets in the early stage can provide a reference for piglet feeding and management during lactation.
|
Received: 22 May 2020
Published: 01 March 2021
|
|
Corresponding Authors:
*jiajianlei870620@163.com
|
|
|
|
[1] 匡宝晓. 2009. 哺乳仔猪的死亡原因及对策[J]. 今日养猪业, (02): 44-46. (Kuang B X. 2009. Causes of death of suckling piglets and countermeasures[J]. Pigs Today, (02): 44-46.) [2] 王四新, 季海峰, 石国华, 等. 2018. 干酪乳杆菌对北京黑猪保育阶段生长性能及肠道菌群的影响[J]. 动物营养学报, 30(1): 326-335. (Wang S X, Ji H F, Shi G H, et al.2018. Effects of Lactobacillus casei on growth performance and intestinal microbiota of Beijing Black pigs in nursery stage[J]. Chinese Journal of Animal Nutrition, 30(1): 326-335. [3] 朱伟云, 余凯凡, 慕春龙, 等. 2014. 猪的肠道微生物与宿主营养代谢[J]. 动物营养学报, 26(10): 3046-3051. (Zhu W Y, Yu K F, Mu C L, et al.2014. Gut microbiota and host nutrition metabolism in pigs[J]. Chinese Journal of Animal Nutrition, 26(10): 3046-3051. [4] Arthur J C, Christian J2015. The struggle within: Microbial influences on colorectal cancer[J]. Inflammatory Bowel Diseases, 17(1): 396-409. [5] Burrin D G, Shulman R J, Reeds P J, et al.1992. Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets[J]. Journal of Nutrition, 122(6): 1205-1213. [6] Caporaso J G, Kuczynski J, Stombaugh J, et al.2010. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 7(5): 335-336. [7] Choi W, Yeruva S, Turner J R2017. Contributions of intestinal epithelial barriers to health and disease[J]. Experimental Cell Research, 358(1): 71-77. [8] Corfield A P2018. The interaction of the gut microbiota with the mucus barrier in health and disease in human[J]. Microorganisms, 6(3): 78. [9] Drissi F, Raoult D, Merhej V, et al.2016. Metabolic role of lactobacilli in weight modification in humans and animals[J]. Microbial Pathogenesis, 106: 182-194. [10] Edgar R C.2010. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 26(19): 2460-2461. [11] Gibson M K, Pesesky M W, Gautam D.2014. The yin and yang of bacterial resilience in the human gut microbiota[J]. Journal of Molecular Biology, 426(23): 3866-3876. [12] Gill S R, Mihai P, Deboy R T, et al.2006. Metagenomic analysis of the human distal gut microbiome[J]. Science, 312(5778): 1355-1359. [13] He F, Liu D, Zhang L, et al.2018. Metagenomic analysis of captive Amur tiger faecal microbiome[J]. BMC Veterinary Research, 14(1): 379. [14] Hongqi L, Redline R W, Han Y W2007. Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response[J]. Journal of Immunology, 179(8): 2501-2508. [15] Hooper L V2001. Commensal host-bacterial relationships in the gut[J]. Science, 292(5519): 1115-1118. [16] Isaacs C E2005. Human milk inactivates pathogens individually, additively, and synergistically[J]. Journal of Nutrition, 135(5): 1286. [17] Isaacson R, Kim H B2012. The intestinal microbiome of the pig[J]. Animal Health Research Reviews, 13(01): 100-109. [18] Jin J P, Zhang L P, Jia J L, et al.2020. Jejunal inflammatory cytokines, barrier proteins and microbiome-metabolome responses to early supplementary feeding of Bamei suckling piglets[J]. BMC Microbiology, 20(1): 169. [19] Jun W, Miriam L, Sven K, et al.2014. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice[J]. Proceedings of the National Academy of Sciences of the USA, 111(26): E2703-E2710. [20] Khodayar-Pardo P, Mira-Pascual L, Collado M C, et al.2014. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota[J]. Journal of Perinatology, 34(8): 599-605. [21] Kim H B, Borewicz K, White B A, et al.2011. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs[J]. Veterinary Microbiology, 153(1-2): 124-133. [22] Kim H B, Isaacson R E2015. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing[J]. Veterinary Microbiology, 177(3-4): 242-251. [23] Kyung L Y, Mazmanian S K2010. Has the microbiota played a critical role in the evolution of the adaptive immune system?[J]. Science, 330(6012): 1768-1773. [24] M Andrea A P, Michael S, Bruno-Bárcena J M2011. The intestinal microbiota, gastrointestinal environment and colorectal cancer: A putative role for probiotics in prevention of colorectal cancer?[J]. AJP: Gastrointestinal and Liver Physiology, 301(3): G401-G424. [25] Ma N, Guo P, Zhang J, et al.2018. Nutrients mediate intestinal bacteria-mucosal immune crosstalk[J]. Frontiers in Immunology, 9: 5. [26] Mauro C, Warren R L, J Douglas F, et al.2012. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma[J]. Genome Research, 22(2): 299-306. [27] Mccoy A N, Araújo-Pérez F, Azcárate-Peril, et al.2013. Fusobacterium is associated with colorectal adenomas[J]. PLOS ONE, 8(1): e53653. [28] Moeller A H, Suzuki T A, Lin D, et al.2017. Dispersal limitation promotes the diversification of the mammalian gut microbiota[J]. Proceedings of the National Academy of Sciences of the USA, 114(52): 13768-13773. [29] Muegge B D, Justin K, Dan K, et al.2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans[J]. Science, 332(6032): 970-974. [30] Parks D H, Tyson G W, Hugenholtz P, et al.2014. STAMP: Statistical analysis of taxonomic and functional profiles[J]. Bioinformatics, 30(21): 3123-3124. [31] Qian Y W, Yang X D, Xu, S Q, et al.2018. Detection of microbial 16S rRNA gene in the blood of patients with parkinson's disease[J]. Frontiers in Aging Neuroscience, 10: 156. [32] Ramirez K S, Knight C G, De H M, et al.2018. Detecting macroecological patterns in bacterial communities across independent studies of global soils[J]. Nature Microbiology, 3(2): 189-196. [33] Schmidt E, Mykytczuk N, Schulte-Hostedde A I2019. Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus)[J]. ISME Journal, 13(5): 1293-1305. [34] Schwenger K J P, Bolzon C M, Li C, et al.2018. Non-alcoholic fatty liver disease and obesity: The role of the gut bacteria[J]. European Journal of Nutrition, 58(5): 1771-1784. [35] Segata N, Izard J, Waldron L, et al.2011. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 12(6): R60. [36] Slifierz M J, Friendship R M, Weese J S2015. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig[J]. BMC Microbiology, 15(1): 184. [37] Smits S A, Leach J, Sonnenburg E D, et al.2017. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania[J]. Science, 357(6353): 802-806. [38] Sonnenburg J L, Chen C T, Gordon J I2006. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host[J]. PLOS Biology, 4(12): e413. [39] Theil P K, Lauridsen C, Quesnel H.2014. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk[J]. Animal An International Journal of Animal Bioscience, 8(7): 1021-1030. [40] Thompson C L, Wang B, Holmes A J.2008. The immediate environment during postnatal development has long-term impact on gut community structure in pigs[J]. Isme Journal, 2(7): 739-748. [41] Valentine G, Chu D M, Stewart C J, et al.2018. Relationships between perinatal interventions, maternal-infant microbiomes, and neonatal outcomes[J]. Clinics in Perinatology, 45(2): 339-355. [42] Walter J, Hertel C, Tannock, GW, et al.2001. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis[J]. Applied and Environmental Microbiology, 67(6): 2578-2585. [43] Walker A.2010. Breast Milk as the Gold standard for protective nutrients[J]. Journal of Pediatrics, 156(2): S3-S7. [44] Yan F, Polk D B2002. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells[J]. Journal of Biological Chemistry, 277(52): 50959-50965. [45] Yan W, Sun C, Yuan J, et al.2017. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency[J]. Scientific Reports, 7(1): 45308. [46] Ye H, Adane B, Khan N, et al.2018. Subversion of systemic glucose metabolism as a mechanism to support the growth of leukemia cells[J]. Cancer Cell, 34(4): 659-673.e6. [47] Zhao Y, Chen Y, Li Z, et al.2018. Environmental factors have a strong impact on the composition and diversity of the gut bacterial community of Chinese Black honeybees[J]. Journal of Asia-Pacific Entomology, 21(1): 261-267. |
|
|
|