|
|
Construction and Application of Recombinant Plasmid Suitable for Bacillus Gene Knockdown by CRISPR/dCas9 System |
TAO Ye, ZHAO Su-Ya, YIN Xiao-Yan, LIU Su-Yao, WEI Xu-Yang, NIU Qiu-Hong* |
College of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China |
|
|
Abstract Bacillus, an important biocontrol resource, widely exists in nature. The establishment of a simple and efficient genetic manipulation technique for Bacillus is helpful to the study of related molecular mechanism. In this study, the recombinant plasmid pBD1 was constructed by molecular biological methods, which can be used for gene knockdown in Bacillus. In order to verify the gene knockdown efficiency of pBD1 in Bacillus, the small guide RNA (sgRNA) of serine protease gene bace16 in B. nematocida B16 was designed and inserted into pBD1 to construct bace16 low-level expression vector, which then electrotransfected into B16 to compare the expression difference of bace16 in the mutant and wild type. The results showed that reversible Bacillus knockdown vector pBD1 was successfully created based on dCas9, and bace16 low-expression mutant strain was obtained by qRT-PCR and enzyme activity tests. The bace16 expression could be complemented to the level of wild type when the inducer ITPG (isopropyl β-D-thiogalactoside) was removed. The present study constructed a reversible gene knockdown recombinant plasmid suitable for Bacillus, and established the gene knockdown and complementary system of Bacillus, which could provide basic information for the study of gene function of Bacillus.
|
Received: 22 May 2020
|
|
Corresponding Authors:
*qiuhongniu723@163.com
|
|
|
|
[1] 韩海红, 汪俊卿, 王腾飞, 等. 2016. 一种基于单交换原理的地衣芽胞杆菌基因敲除方法及应用[J]. 中国生物工程杂志, 36(11): 63-69. (Han H H, Wang J Q, Wang T F, et al.2016. Method and application of gene knockout based single cross in Bacillus licheniformis 20085[J]. China Biotechnology, 36(11): 63-69.) [2] 李由然, 顾正华, 张梁, 等. 2017. CRISPR/Cas9系统介导的地衣芽胞杆菌基因敲除[J]. 基因组学与应用生物学, 36(10): 4188-4196. (Li Y R, Gu Z H, Zhang L, et al.2017. Gene knockout of Bacillus licheniformis mediated by CRISPR/Cas9[J]. Genomics and Applied Biology, 36(10): 4188-4196.) [3] 唐文杰, 余冰, 虞洁, 等. 2019. 解淀粉芽胞杆菌抑菌作用及在养猪业中的应用[J]. 动物营养学报, 31(06): 2502-2506. (Tang W J, Yu B, Yu J, et al.2019. Antibacterial effects of Bacillus amyloliquefaciens and its application in pig industry[J]. Chinese Journal of Animal Nutrition, 31(06): 2502-2506.) [4] 王超, 贺婷婷, 宋婷, 等. 2017. 短小芽胞杆菌遗传操作系统的建立及应用[J]. 四川大学学报(自然科学版), 54(05):1083-1088. (Wang C, He T T, Song T, et al.2017. The construction and application of agenetic manipulation system for Bacillus pumilus[J]. Journal of Sichuan University (Natural Science Edition), 54(05): 1083-1088.) [5] 肖水华, 洪钦阳, 林燕珍, 等. 2013. 基因敲除技术在芽抱杆菌中的应用研究[J]. 生物技术进展, 3(2): 81-84. (Xiao S H, Hong Q Y, Lin Y Z, et al.2013. Research and application of gene knockout technology in Bacillus[J]. Current Biotechnology, 3(2): 81-84.) [6] 张琛, 许慧卿, 崔桂友, 等. 2019. 纳豆芽胞杆菌Bacillus natto 16-1对小麦粉中呕吐毒素的脱毒机制研究[J]. 食品与机械, 35(3): 8-14. (Zhang C, Xu H Q, Cui G Y, et al.Removal mechanisms of deoxynivalenol by Bacillus natto 16-1 in wheat flour[J]. Food & Machinery, 35(3): 8-14.) [7] Bilichak A, Sastry-Dent L, Sriram S, et al.2020. Genome editing in wheat microspores and haploid embryos mediated by delivery of ZFN proteins and cell‐penetrating peptide complexes[J]. 18(5): 1307-1316. [8] Blanas A, Cornelissen L A M, Kotsias M, et al.2019. Transcriptional activation of fucosyltransferase (FUT) genes using the CRISPR-dCas9-VPR technology reveals potent N-glycome alterations in colorectal cancer cells[J]. 29(2): 137-150. [9] Boch J, Scholze H, Schornack S, et al.2010. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors[J]. Science, 326(5): 1509-1512. [10] Choudhary E, Thakur P, Pareek M, et al.2015. Gene silencing by CRISPR interference in mycobacteria[J]. Nature Communication, 6: 6267-7267. [11] Doetschman T, Gregg R G, Maeda N, et al.1987. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells[J]. Nature, 330(6148): 576-578. [12] Gaj T, Gersbach C A, Iii C F B.2013. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 31(7):397-405. [13] Guan R B, Chen Q Y, Li H C, et al.2019. Knockout of the HaREase gene improves the stability of dsRNA and increases the sensitivity of Helicoverpa armigera to Bacillus thuringiensis toxin[J]. Frontiers in Physiology, 10: 1368. [14] Hannon G J.2002. RNA interference[J]. Nature, 418(6894): 244-251. [15] Hsu P, Lander E, Zhang F.2014. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 157(6): 1262-1278. [16] Jee-Hwan O, Jan-Peter V P.2014, CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri[J]. Nucleic Acids Research, 42(17): e131. [17] Jinek M, Chylinski K, Fonfara I, et al.2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 337(6096): 816-821. [18] Konermann S, Brigham M D, Trevino A E, et al.2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 517(7536): 583-588 [19] Liu G X, Vijayaraman S B, Dong Y J, et al.2020. Bacillus velezensis LG37: Transcriptome profiling and functional verification of GlnK and MnrA in ammonia assimilation[J]. BMC Genomics, 21: 215. [20] Mali P, Aach J, Stranges P B, et al.2013. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J]. Nature Biotechnology, 31(9): 833-838. [21] Marraffini L A, Sontheimer E J.2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archae[J]. Nature Reviews Genetics, 11(3): 181-190. [22] Muhammad T, Zhang F, Zhang Y, et al.2019. RNA Interference: A natural immune system of plants to counteract biotic stressors[J]. Cells, 8(1): 38. [23] Niu Q H, Huang X W, Tian B Y, et al.2006. Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor[J]. Applied Microbiology and Biotechnology, 69(6): 722-730. [24] Niu Q H, Huang X W, Zhang L, et al.2007. Functional identification of the gene bace16 from nematophagous bacterium Bacillus nematocida[J]. Applied Microbiology and Biotechnology, 75(1): 141-148. [25] Niu Q H, Huang X W, Zhang L, et al.2010. A Trojan horse mechanism of bacterial pathogenesis against nematodes[J]. Proceedings of the National Academy of Sciences of the USA, 107(38): 16631-16636. [26] Niu Q H, Zheng H Y, Zhang L, et al.2015. Knockout of the adp gene related with colonization in Bacillus nematocida B16 using customized transcription activator-like effectors nucleases[J]. Microbial Biotechnology, 8(4): 681-692. [27] Omony J, Jong A D, Krawczyk A O, et al.2018. Dynamic sporulation gene co-expression networks for Bacillus subtilis 168 and the food-borne isolate Bacillus amyloliquefaciens: A transcriptomic model[J]. Microbial Biotechnology, 4(2): e000157. [28] Paschon D E, Lussier S, Wangzor T, et al.2019. Diversifying the structure of zinc finger nucleases for high-precision genome editing[J]. Nature Communication, 10: 1133-1142. [29] Qi L S, Larson M H, Gilbert L A, et al.2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 152(5): 1173-1183. [30] Romano D, Falcioni F, Mora D, et al.2005. Enhanced enantioselectivity of Bacillus coagulans, in the hydrolysis of 1,2-O-isopropylidene glycerol esters by thermal knock-out of undesired enzymes[J]. Tetrahedron Asymmetry, 16(4): 841-845. [31] Sander J D, Dahlborg E, Goodwin M J, et al.2011. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA)[J]. Nature Methods, 8(1): 67-69. [32] Sorek R, Lawrence C M, Wiedenheft B.2013. CRISPR-mediated adaptive immune systems in bacteria and archaea[J]. Annual Review of Biochemistry, 82(1): 237-266. [33] Sun Z P, Deng A H, Hu T, et al.2015. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35[J]. Applied Microbiology and Biotechnology, 99(12): 5151-5162. [34] Thanh H K, Phuong Phan T T, Thuoc T L, et al.2014. A study on using strong promoter Pgrac212 to enhance the secretional expression of reporter alpha-amylase in Bacillus subtilis[J]. Academic Journal of Biology, 39(1se): 90-96. [35] Watzlawick H, Altenbuchner J.2019. Multiple integration of the gene ganA into the Bacillus subtilis chromosome for enhanced β-galactosidase production using the CRISPR/Cas9 system[J]. AMB Express, 9: 158. [36] Yakhnin H, Babitzke P.2004. Gene Replacement method for determining conditions in which Bacillus subtilis genes are essential or dispensable for cell viability[J]. Applied microbiology and Biotechnology, 64(3): 382-386. [37] Zakataeva N P, Nikitina O V, Gronski S V, et al.2010. A simple mefliod to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains[J]. Applied Microbiology and Biotechnology, 85(4): 1201-1209. [38] Zhang Y W, Werling U, Edelmann W.2012. SLiCE: A novel bacterial cell extract-based DNA cloning method[J]. Nucleic Acids Research, 40(8): e55. |
|
|
|