|
|
Bioinformatics and Expression Characteristic Analysis of StUBC12 gene of Potato (Solanum tuberosum) |
FU Xue1, TANG Xun1,2, LIU Wei-Gang2,3, LI Shi-Gui3, QI Xue-Hong1, ZHANG Ning1, SI Huai-Jun1,2,* |
1 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China; 3 College of Agronomy , Gansu Agricultural University, Lanzhou 730070, China |
|
|
Abstract The ubiquitin-proteasome pathway is widely involved in various stages of plant growth and development. The ubiquitin-conjugating enzyme E2 is the key enzyme in the pathway of enzyme-catalyzed and plays an important role in process of substrate ubiquitination. In this study, the StUBC12 (GenBank No. XM_006343293.2) was cloned from the potato (Solanum tuberosun) cultivar 'Atlantic' leaf cDNA. The full-length of the gene was 2 112 bp, and the CDS region is 444 bp. It was a split gene containing 3 introns and 4 exons. Bioinformatics analysis of StUBC12 indicated that the gene was a non-transmembrane protein encoded by 148 amino acids with a typical UQ_con conserved domain. The qRT-PCR technology was used to analyze the gene expression level of roots, stems, leaves and flowers in potato cultivars 'Atlantic' and 'Qingshu 9'. The results showed that the gene expression level was the highest in leaves and flowers. The expression level in 'Atlantic' was significantly higher than 'Qingshu 9'. Under drought and salt stress, potato StUBC12 gene up-regulated to increase plant stress resistance. This study could provide a theoretical basis for further study of the potato stress-resistance mechanism and the functional of the StUBC12 gene.
|
Received: 16 October 2019
|
|
Corresponding Authors:
*hjsi@gsau.edu.cn
|
|
|
|
[1] 曹清河, 李雪华, 戴习彬, 等. 2016. PEG-6000模拟干旱胁迫对甘薯近缘野生种Ipomoea trifida (Kunth) G. Don幼苗生理生化指标的影响[J].西南农业学报, 29(11): 2536-2541. (Cao Q H, Li X H, Dai X B, et al.Effects of drought Simulated by PEG-6000 on seedling physiological and biochemical indexes of wild sweet potato relative Ipomoea trifida(Kunth) G. Don[J]. Southwest China Journal of Agricultural Sciences, 29(11): 2536-2541.) [2] 陈超, 乔艳花, 井常煦, 等. 2020. 大豆UBC基因家族鉴定及GmUBC46基因的功能初步分析[J].植物遗传资源学报, 21(01): 154-163. (Chen C, Qiao Y H, Jing C X, et al.2020. Identification of soybean UBC gene family and preliminary functional analysis of GmUBC46[J]. Journal of Plant Genetic Resources, 21(01): 154-163.) [3] 陈亚鹏, 陈亚宁, 李卫红, 等. 2003. 干旱胁迫下的胡杨脯氨酸累积特点分析[J]. 干旱区地理, 26(4): 420-424. (Chen Y P, Chen Y N, Li W H, et al.2003. Analysis on the change of drought stress on proline of Populus euphratica in the lower reaches of Tarim River[J]. Arid Land Geography, 26(4): 420-424.) [4] 胡博, 肖素妮, 吕滟, 等. 2012.不同花生品种响应干旱胁迫后叶片内ABA与AhNCED1的分布[J]. 中国细胞生物学学报, 34(10): 992-997. (Hu B, Xiao S N, Lü Y, et al.2012. Distribution of ABA and AhNCED1 in peanut leaves of different drought resistant cultivars subjected to drought stress[J]. Chinese Journal of Cell Biology, 34(10): 992-997.) [5] 黄海杰, 陈雄庭. 2008. 植物泛素/26S蛋白酶体途径研究进展[J]. 中国生物工程杂志, 28(07): 127-132. (Huang H J, Chen X T.2008. The progress on the ubiquitin 26S proteasome pathway in plants[J]. Journal of Chinese Biotechnology, 28(07): 127-132.) [6] 冀宪领, 盖英萍, 牟志美, 等. 2016. 干旱胁迫对桑树生理生化特性的影响[J]. 蚕业科学, 30(02): 117-121. (Ji X L, Gai Y P, Mu Z M, et al.2016. Effect of water stress on physiological and biochemical character of mulberry[J]. Science of Sericulture, 30(02): 117-121.) [7] 蒋忠荣, 申飞, 刘志, 等. 2015. 津田芜菁泛素结合酶BrUBC11基因的克隆及表达分析[J]. 华北农学报, 30(1): 97-102. (Jiang Z R, Shen F, Liu Z, et al.2015. Cloning and expression analysis of ubiquitin-conjugating enzyme 11(BrUBC11) in Brassica rapa L.subsp.rapa Tsuda[J]. Acta Agriculturae Boreali-Sinica, 30(1): 97-102.) [8] 柳俊, 谢从华. 2001. 马铃薯块茎发育机理及其基因表达[J]. 植物学报, 18(5): 531-539. (Liu J, Xie C H.2001.The mechanism of potato (Solanum tuberosum L.) tuber development and related gene expression[J]. Chinese Bulletin of Botany, 18(5): 531-539.) [9] 王谧. 2014.马铃薯抗旱指标研究及抗旱性鉴定[D].硕士学位论文, 青海大学, 导师: 王舰, 王芳. pp. 22-46. (Wang M.2014. The research of drought resistance indexs and drought resistance identification in potato[D]. Thesis for M.S., Qinghai University, Supervisor: Wang J, Wang F. pp. 22-46) [10] 徐迎春, 李绍华, 柴成林, 等. 2001. 水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究[J]. 果树学报, 18(1): 1-6. (Xu Y C, Li S H, Cai C L, et al.2001. Carbohydrate metabolism in source leaves of jonagold apple tree under water stress and after water stress relief[J]. Journal of Fruit Science, 18(1): 1-6.) [11] 张凤军, 阮建平, 王燕钧, 等. 2015. 干旱调控下马铃薯抗旱相关性状的遗传变异分析[J]. 种子, 34(3): 20-22. (Zhang F J, Ruan J P, Wang Y J, et al.2015. Genetic analysis of drought-resistance traits regulated by drought in potato[J]. Seed, 34(3): 20-22.) [12] 朱家红, 徐靖, 畅文军, 等. 2014. 巴西橡胶树泛素结合酶基因HbUBC5的克隆和表达分析[J]. 热带作物学报, 35(9): 1710-1714. (Zhu J H, Xu J, Chang W J, et al.2014. Cloning and expression analysis of ubiquitin conjugating enzyme gene HbUBC5 from Hevea brasiliensis[J]. Chinese Journal of Tropical Crops, 35(9): 1710-1714.) [13] Bahmani R, Kim D G, Lee B D, et al.2017. Over-expression of tobacco UBC1 encoding a ubiquitin-conjugating enzyme increases cadmium tolerance by activating the 20S/26S proteasome and by decreasing Cd accumulation and oxidative stress in tobacco (Nicotiana tabacum)[J]. Plant Molecular Biology, 94(7): 433-451. [14] Chen X, Wang B, Wu R.1995. A gibberellin-stimulated ubiquitin-conjugating enzyme gene is involved in alpha-amylase gene expression in rice aleurone[J]. Plant Molecular Biology, 29(4): 787-795. [15] Chen Z J, Sun L J.2009.Nonproteolytic functions of ubiquitin in cell signaling[J]. Molecular Cell, 33(3): 275-286. [16] Cui F, Liu L, Zhao Q, et al.2012. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance[J]. The Plant Cell, 24(1): 233-244. [17] Dengwei J, Xuelian S, Liqin L, et al.2018.The ubiquitin-conjugating enzyme gene family in Longan (Dimocarpus longan Lour.): Genome-wide identification and gene expression during flower induction and abiotic stress responses[J]. Molecules, 23(3): 662-679. [18] Endo A, Sawada Y, Takahashi H, et al.2008. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells[J]. Plant Physiology, 147(4): 1984-1993. [19] Eunsook C, Chang-Woo C, Hyun-Ah S, et al.2013.Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis[J]. PLOS ONE, 8(6): e66056. [20] Fidalgo F, Santos A, Santos I, et al.2004. Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants[J]. Annals of Applied Biology, 145(2): 185-192. [21] Ikeda F, Dikic I.2008. Atypical ubiquitin chains: new molecular signals.Protein modifications: Beyond the usual suspects' review series[J]. Embo Reports, 9(6): 536-542. [22] Jeon E H, Pak J H, Kim M J, et al.2012. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice,OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 427(2): 309-314. [23] Jue D, Sang X, Lu S, et al.2015. Genome-wide identification, phylogenetic and expression analyses of the ubiquitin-conjugating enzyme gene family in maize[J]. PLOS ONE, 10(11): e0143488. [24] Hershko A.1998.The ubiquitin system[J]. Nature Medicine, 67: 425-479. [25] Liu W, Tang X, Zhu X, et al.2018. Genome-wide identification and expression analysis of the E2 gene family in potato[J]. Molecular Biology Reports, 46(1): 777-791. [26] Li W, Schmidt W.2010. A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots[J]. Plant Journal, 62(5): 330-343. [27] Olsen S, Lima C.2013. Structure of a ubiquitin E1-E2 complex: Insights to E1-E2 thioester transfer[J]. Molecular Cell, 49(5): 884-896. [28] Pfaffl M W.2001. A new mathematical model for relative quantification in real-time PCR[J]. Nucleic Acids Research, 29(9): e45. [29] Raab S, Drechsel G, Zarepour M, et al.2009. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis[J]. The Plant Journal, 59(1): 39-51. [30] Santner A, Estelle M.2010. The ubiquitin-proteasome system regulates plant hormone signaling[J]. The Plant Journal, 61(6): 1029-1040. [31] Wan X, Mo A, Shuai L, et al.2011. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression[J]. Journal of Bioscience & Bioengineering,111(4): 478-484. [32] Xu D B, Yu Y H, He Q L, et al.2014. Characteristics and function of a GmDREB5-interacting protein GmUBC13 in soybean[J]. Scientia Agricultura Sinica, 47(18): 3534-3544. [33] Xu L, Rozenn Ménard, Berr A, et al.2008. The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana[J]. The Plant Journal, 57(2): 279-288. [34] Xu X, Pan S, Cheng S, et al.2011.Genome sequence and analysis of tuber crop potato[J]. Nature, 475(7355): 189-95. [35] Yong A M, Rin O T, Hye S D, et al.2018. Arabidopsis group XIV ubiquitin-conjugating enzymes AtUBC32, AtUBC33, and AtUBC34 play negative roles in drought stress response[J]. Journal of Plant Physiology, 230(18):73-79. [36] Zhiguo E, Zhang Y, Li T, et al.2015. Characterization of the ubiquitin-conjugating enzyme gene family in rice and evaluation of expression profiles under abiotic stresses and hormone treatments[J]. PLOS ONE, 10(4): e0122621. [37] Zhou G A, Chang R Z,Qiu L J.2010. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis[J]. Plant Molecular Biology, 72(4-5): 357-367. |
[1] |
WANG Peng, LI Fang-Di, GUO Tian-Shun, DOU Jun-Huan, XIE Wei-Qing, LUO Zhao-Xia, QI Xiao-Dong, YANG Chen, ZHAO Zhong-Liang, SONG Yi, LV Tai. Genetic Relationship Analysis and Fingerprint Construction of Potato(Solanum tuberosum) Germplasm Resources[J]. 农业生物技术学报, 2020, 28(5): 794-810. |
|
|
|
|