|
|
Preparation and Identification of Polyclonal Antibody Against the p38MAPK of Nile Tilapia (Oreochromis niloticus) |
HU Ping-Ge1, 2, ZOU Zhi-Ying1, 2, ZHU Jing-Lin2, YU Jie2, XIAO Wei2, LI Da-Yu2, YANG Hong1, 2, *, MA Yin-Hua1, 2, CHEN Bing-Lin1, 2 |
1 College of Wuxi Fishery, Nanjing Agricultural University, Wuxi 214081, China; 2 Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China |
|
|
Abstract P38 mitogen-activated protein kinase (p38MAPK) plays an important role in the process of biological autoimmunity regulation. To explore the role of p38MAPK in the immune response of Nile tilapia (Oreochromis niloticus), the p38MAPK partial coding sequence was prepared by gene synthesis. It was cloned into pET-28a to construct prokaryotic expression plasmid pET-28a-p38MAPK. And expression was successfully induced in Escherichia coli after purification by Ni-NTA chromatography column, the p38MAPK polyclonal antibody was prepared by immunizing New Zealand white rabbits (Oryctolagus cuniculus) with purified fusion protein. Using the purified polyclonal antibodies, the p38MAPK protein expression was detected in different tissues of Nile tilapia. The results showed that the fusion protein obtained by the expression induction of the prokaryotic vector had a molecular weight of about 23 kD, and mainly existed in the form of inclusion body. The titer of antibody was estimated as high as 1∶256 000 dilution ration detected by ELISA and Western blot, and it could specifically recognize the p38MAPK protein. The tissue expression analysis showed that p38MAPK was expressed in most tested tissues, with the highest levels in ovary, brain and muscle; moderate levels in head kidney and blood; low levels in skin and gill; the lowest levels in liver, spleen, intestine and heart. This study provides foundation for further exploring the disease-resistant immunity of Nile tilapia.
|
Received: 09 August 2019
|
|
Corresponding Authors:
* yangh@ffrc.cn
|
|
|
|
1 包义风, 应莲芳, 蒋琳. 2012. 包涵体蛋白复性技术研究进展[J]. 微生物学免疫学进展, 40(02): 84-88. (Bao Y F, Ying L F, Jiang L.2012. Research progress in renaturation of inclusion body protein[J]. Progress in Microbiology and Immunology, 40(02): 84-88.) 2 鄂伟国, 赵海平. 2015. p38mapk特异性抑制剂sb203580在胰性脑病中的作用[J]. 世界最新医学信息文摘, 15(81): 24-25. (E W G, Zhao H P.2015. Effect of p38MAPK specific inhibitor SB203580 on pancreatic encephalopathy[J]. World Latest Medicine Information, 15(81): 24-25.) 3 葛春梅, 刘殊嘉, 陈阿琴, 等. 2018. p38MAPK mRNA在斑马鱼卵母细胞发育中的表达[J]. 基因组学与应用生物学, 37(06): 2350-2355. (Ge C M, Liu S J, Chen A Q, et al.2018. Expression of p38MAPK mRNA in Developmental Oocytes Zebrafish[J]. Genomics and Applied Biology, 37(06): 2350-2355. ) 4 黄浩, 王阳, 堵国成, 等. 2019. 重组蛋白微生物表达系统的研究进展[J]. 生物产业技术, 00(03): 36-43. (Huang H, Wang Y, Du G C, et al.2019. Research progress in microbial expression systems for recombinant protein production[J]. Biotechnology & Business, 00(03): 36-43.) 5 井明艳, 孙建义. 2004. 蛋白质的折叠调控与包涵体的形成[J]. 浙江大学学报(农业与生命科学版), 30(06): 690-696. (Jing M Y, Sun J Y.2004. Protein folding and the formation of inclusion bodies[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 30(06): 690-696.) 6 刘召民. 2012. 青岛文昌鱼ERK5, p38抗体的制备及体内蛋白表达的初步研究[D]. 硕士学位论文, 山东大学, 导师: 陈忠科, pp. 85-102. (Liu Z M.2012. Preparation of Amphi-ERK5, Amphi-p38 antibodies and preliminary study on the expression of the two proteins in amphioxus[D]. Thesis for M.S., Shandong university, Suppervisor: Chen Z K, pp. 85-102.) 7 李园园. 2015. 白鲢p38MAPK, c-fos, c-jun基因克隆及其微囊藻毒素暴露后的表达分析[D]. 硕士学位论文, 河南师范大学导师: 李效宇, pp. 51-56. (Li Y Y.2015. Molecular cloning of p38MAPK, c-fos, c-jun and transcription in the liver and kidney of silver carp exposed to microcystins[D]. Thesis for M.S., Henan normal university, Suppervisor: Li X Y, pp. 51-56.) 8 汤加勇, 赵华. 2017. 细胞样Western Blot分析技术探讨[J]. 实验科学与技术, 15(06): 53-55. (Tang J Y, Zhao H.2017. Application of Western blot analysis in cell samples[J]. Experiment Science and Technology, 15(06): 53-55.) 9 夏洪丽, 蔡佳, 鲁义善, 等. 2014. 红笛鲷p38β MAPK基因的克隆及原核表达[J]. 生物技术通报, Vol. 0(12): 177-183. (Xia H L, Cai J, Lu Y S, et al.2014. cloning and Prokaryotic Expression of p38β MAPK from Lutjanus sanguineus[J]. Biotechnology Bulletin, Vol. 0(12): 177-183.) 10 闫寒, 付彩雯, 马博清. 2015. p38丝裂原活化蛋白激酶在糖尿病肾脏疾病中的研究进展[J]. 医学综述, 21(01): 0-1. (Yan H, Fu C W, Ma B Q.2015. Research progress on the role of p38 mitogen-activated protein kinases in diabetic nephropathy[J]. Medical Recapitulate, 21(01): 0-1.) 11 姚万龙, 何玉英, 刘萍, 等. 2016. 中国对虾(Fenneropenaeus chinensis)p38 MAPK基因克隆及表达分析[J]. 渔业科学进展, 37(02): 91-98. (Yao W L, He Y Y, Liu P, et al.2016. The cDNA Cloning and expression analysis of p38 MAPK gene of Fenneropenaeus chinensis[J]. Marine Fisheries Research, 37(02): 91-98.) 12 张频捷, 朱立新, 耿小平. 2010. p38MAPK信号传导通路及其抑制剂的研究现状[J]. 安徽医药, 14(05): 596-598. (Zhang P J, Zhu L X, Geng X P.2010. p38 mitogen activated protein kinase pathway and its inhibitor[J]. Anhui Medical and Pharmaceutical Journal, 14(05): 596-598.) 13 赵金生, 徐晓雪, 孙晓宇, 等. 2014. 遗传性癫痫大鼠海马ERK与p38蛋白的异常变化[J]. 解剖科学进展, 20(05): 429-432. (Zhao J S, Xu X X, Sun X Y.2014. The abnormal changes of ERK and p38 proteins in the hippocampus of genetic epileptic rats[J]. Progress of Anatomical Sciences, 20(05): 429-432.) 14 庄秋宇, 刘俊, 韩家淮. 2013. p38丝裂原活化蛋白激酶的功能与调控机制[J]. 中国细胞生物学学报, 35(02): 123-133. (Zhuang Q Y, Liu J, Han J Z.2013. Functions and mechanisms of the p38 MAP kinase pathway[J]. Chinese Journal of Cell Biology, 35(02): 123-133.) 15 祝璟琳, 邹芝英, 李大宇, 等. 2014. 尼罗罗非鱼无乳链球菌病的病理学研究[J]. 水产学报, 38(11): 1937-1944. (Zhu J L, Zou Z Y, Li D Y, et al.2014. Pathological changes in tilapia (Oreochromis niloticus) naturally infected by Streptococcus agalactiae[J]. Journal of Fisheries of China, 38(11): 1937-1944.) 16 Brewster J, De Valoir T, Dwyer N, et al.1993. An osmosensing signal transduction pathway in yeast[J]. Science, 259(5102): 1760-1763. 17 Cai J, Huang Y H, Wei S N, et al.2011. Characterization of p38 MAPKs from orange-spotted grouper, Epinephelus coioides involved in SGIV infection[J]. Fish & Shellfish Immunology, 31(6): 1129-1136. 18 Cicenas J, Zalyte E, Rimkus A, et al.2018. JNK, p38, ERK, and SGK1 inhibitors in cancer[J]. Cancers, 10(1): 1. 19 Hansen T E, Jørgensen J B.2007. Cloning and characterisation of p38 MAP kinase from Atlantic salmon A kinase important for regulating salmon TNF-2 and IL-1β expression[J]. Molecular Immunology, 44(12): 3137-3146. 20 Hashimoto H, Fukuda M, Matsuo Y, et al.2000. Identification of a nuclear export signal in MKK6, an activator of the carp p38 mitogen-activated protein kinases[J]. European Journal of Biochemistry, 267(14): 4362-4371. 21 He J Y, Zhong W W, Zhang M, et al.2018. P38 mitogen-activated protein kinase and Parkinson's disease[J]. Translational Neuroscience, 9(1): 147-153. 22 Krens S F, He S, Spaink H P, et al.2006. Characterization and expression pattern of the MAPK family in zebrafish[J]. Gene Expression Patterns, 6(8): 1019-1026. 23 Kumar R, Khandelwal N, Thachamvally R, et al.2018. Role of MAPK/MNK1 signaling in virus replication[J]. Virus Research, 253(15): 48-61. 24 Maik-Rachline G, Zehorai E, Hanoch T, et al.2018. The nuclear translocation of the kinases p38 and JNK promotes inflammation-induced cancer[J]. Science Signaling, 11(525): eaao3428. 25 Oliveira S, Neeli-Venkata R, Goncalves N S M, et al.2016. Increased cytoplasm viscosity hampers aggregate polar segregation in Escherichia coli[J]. Molecular Microbiology, 99(4): 686-699. 26 Rinas U, Garcia-Fruitós E, Corchero J L, et al.2017. Bacterial inclusion bodies: Discovering their better half[J]. Trends in Biochemical Sciences, 42(9): 726-737. 27 Upadhyay A K, Murmu A, Singh A, et al.2012. Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli[J]. PLoS One, 7(3): e33951. 28 Xiao Z, Michael B.2017. Targeting p38 MAP kinase signaling in cancer through post-translational modifications[J]. Cancer Letters, 384(1): 19-26. 29 Zhang C N, Rahimnejad S, Lu K L, et al.2019. Molecular characterization of p38 MAPK from blunt snout bream (Megalobrama amblycephala) and its expression after ammonia stress, and lipopolysaccharide and bacterial challenge[J]. Fish and Shellfish Immunology, 84: 848-856. 30 Zhao P F, Wang C, Li W G.2019. FBXW5 reduction alleviates spinal cord injury (SCI) by blocking microglia activity: A mechanism involving p38 and JNK[J]. Biochemical and Biophysical Research Communications, 514(2): 558-564. |
[1] |
HAN Xue-Qing, GAO Feng-Ying, LU Mai-Xin, LIU Zhi-Gang, CAO Jian-Meng, WANG Miao, YI Meng-Meng, ZHANG De-Feng. Cloning, Expression and Functional Analysis of TRAF4 Gene in Nile Tilapia (Oreochromis niloticus)[J]. 农业生物技术学报, 2019, 27(3): 381-392. |
|
|
|
|