|
|
Advances in Research on the Effects of AM Fungi on Plant Pest Control |
LI Yang1, 2, YAN Jun-Xin1, *, CHEN Xiao-Ling2, * |
1 College of Landscape Architecture, Northeast Forestry University, Harbin 150004, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
|
|
Abstract Arbuscular mycorrhizae (AM) fungi are the oldest and most extensive plant symbionts on the earth, which promotes good plant growth and is also a green environment-friendly pest control pathway. This paper is based on the research status of AM fungi control pests for many years. From the mechanism of AM fungi on plant pest control, it clarifies two ways in which AM fungi change the coping mechanism of symbiotic plants in the face of pest invasion: 1) Promote the plant to produce secondary metabolites to strengthen chemical defense and improve plant pests direct or indirect defense ability to enhance the insect resistance of plants; 2) Improve plant tolerance to pests by improving plant growth, plant nutrition, root activity, etc. This review provides a theoretical basis for biological control of plant pests and prospects for the development direction of AM fungi and the application prospects of insect pests.
|
Received: 29 December 2018
|
|
Corresponding Authors:
yanjunxin@163.com; chenxiaoling@caas.cn
|
|
|
|
1 邓溧, 曾明, 李燕, 等. 2016. 盆栽柑桔苗接种丛枝菌根真菌的生长与钙氮吸收效应[J]. 中国南方果树, 45(3): 55-57. (Deng L, Zeng M, Li Y, et al.2016. Effect of potted citrus seedlings inoculated with arbuscular mycorrhizal fungi on growth and calcium and nitrogen uptake[J]. Fruit Trees in Southern China, 45(3): 55-57.) 2 冯国辉. 2015. 丛枝菌根真菌对能源草柳枝稷生态适应性的研究[D]. 硕士毕业论文, 中国地质大学, 导师: 冯海燕, pp. 28-29. (Feng G H.2015. Research on the ecological adaptability of arbuscular mycorrhizal fungi to switchgrass[D]. Thesis for M.S., China University of Geosciences, Suppervisor: Feng H Y, pp. 28-29.) 3 蒋科技, 皮妍, 侯嵘, 等. 2010. 植物内源茉莉酸类物质的生物合成途径及其生物学意义[J]. 植物学报, 45(2): 137-148. (Jiang K J, Pi Y, Hou R, et al.2010. Biosynthesis of endogenous jasmonates and its biological significance[J]. Acta Botanica Sinica, 45(2): 137-148.) 4 李涛, 赵之伟. 2005. 丛枝菌根真菌产球囊霉素研究进展[J]. 生态学杂志, 24(9): 1080-1084. (Le T, Zhao Z W.2005. Advances in the production of chondrocytomycin by arbuscular mycorrhizal fungi[J]. Ecology, 24(9): 1080-1084.) 5 李许真, 姜永华, 陈书霞, 等. 2016. AM真菌和根结线虫互作对黄瓜幼苗生理变化的影响[J]. 北方园艺, (05): 9-13. (Le X Z, Jiang Y H, Chen S X, et al. 2016. Effects of AM fungi and root knot nematode worms on physiological changes of cucumber seedlings[J]. Northern Horticulture, (05): 9-13.) 6 廉法卓, 林熠斌, 胡林, 等. 2019. 菌根菌丝网络介导的番茄植株间机械损伤信号的传递[J]. 福建农林大学学报, 48(01): 11-17. (Lian F Z, Lin Y B, Hu L, et al.2019. Mycorrhizal mycelium network mediated transmission of mechanical damage signals between tomato plants[J]. Journal of Fujian Agriculture and Forestry University, 48(01): 11-17. ) 7 梁晓薇, 杨全, 李丹, 等. 2017. 茉莉酸甲酯对甘草根次生代谢的调控[J]. 广东农业科学, 44(6): 57-62. (Liang X W, Yang Q, Li D, et al.2017. Regulation of methyl jasmonate on secondary metabolism of licorice root[J]. Guangdong Agricultural Science, 44(6): 57-62.) 8 梁雪飞, 唐梦君, 吕立新, 等. 2018. 三种丛枝菌根真菌对茅苍术的生长、生理及主要挥发油成分的影响[J]. 生态学杂志, 37(6): 1871-1879. (Liang X F, Tang M J, Lv L X, et al.2018. Effects of three arbuscular mycorrhizal fungi ( AMF) species on the growth, physiology, and major components of essential oil of Atractylodes lancea[J]. Journal of Ecology, 37(6): 1871-1879.) 9 刘福, 尉敬涛, 王宇宏, 等. 2018. 丛枝菌根真菌对棉花抗病防御酶系活性影响的研究[J]. 山西科技, 33(1).(Liu F,Wei J T,Wang Y H, et al. 2018. Study on the effect of arbuscular mycorrhizal fungi on the activity of cotton disease-resistant and defense enzyme system[J]. Shanxi Science and Technology, 33(1).) 10 刘先良, 习向银, 申鸿, 等. 2014. 接种丛枝菌根真菌对烟草青枯病抗性的影响[J]. 烟草科技, 49(5): 23-30. (Liu X L, Xi X Y, Shen H, et al.2014. Effects of arbuscular mycorrhizal fungi inoculation on tobacco bacterial wilt resistance[J]. Tobacco Science and Technology, 49(5): 23-30.) 11 刘月华, 钟梦莹, 武瑞鑫,等.2016. AM真菌介导垂穗披碱草抗虫作用研究[J]. 草地学报, 24(3): 604-609. (Liu Y H, Zhong M Y,Wu R X, et al.2016. Study on the anti-insect effects of AM fungi on the leaves of Saprophyllum japonicum[J]. Acta Grassland Sinica, 24(3): 604-609.) 12 宋福强, 范晓旭, 常伟, 等. 2016. 苜蓿菌根对土壤中阿特拉津降解及酶活性影响[J]. 中国农学通报, 32(30): 182-187. (Song F Q, Fan X X, Chang W, et al.2016. Effect of alfalfa mycorrhizal on degradation and enzyme activity of atrazine in soil[J]. Chinese Journal of Agronomy, 32(30): 182-187.) 13 王琚钢, 峥嵘, 白淑兰, 等. 2014. 菌根分子生物学研究进展[J]. 生态学杂志, 33(3): 816-824. (Wang J G, Zheng R, Bai S L, et al.2014. Advances in molecular biology of mycorrhizal[J]. Journal of Ecology, 33(3): 816-824.) 14 王宇涛, 辛国荣, 李韶山, 等. 2013. 丛枝菌根真菌最新分类系统与物种多样性研究概况[J]. 生态学报, 33(3): 0834-0843. (Wang Y T, Xin G R, Le S S, et al.2013. An overview of the updated classification system and species diversity of arbuscular mycorrhizal fungi[J].Acta Ecologica Sinica, 33(3):0834-0843.) 15 谢丽君, 宋圆圆, 曾任森, 等. 2012.丛枝菌根菌丝桥介导的番茄植株根系间抗病信号的传递[J]. 应用生态学报, 23(5). (Xie L J, Song Y Y, Zeng R S, et al.2012. Arbuscular mycorrhizal hyphae bridge mediated transmission of disease resistance signals between tomato roots[J]. Acta agric Ecologica Sinica, 23(5). ) 16 张立丹, 张俊伶, 李晓林, 等. 2011. 丛枝菌根与植物寄生性线虫相互作用及抗性机制[J]. 土壤, 43(3): 426-432. (Zhang L D, Zhang J L, Le X L, et al.2011. Arbuscular mycorrhizal interaction with parasitic nematode and resistance mechanism[J]. Soil, 43(3): 426-432.) 17 周修腾, 王雪, 陈敏, 等. 2017. 丛枝菌根真菌对丹参木质部结构及防御相关基因的影响[J]. 中国农学通报, 33(4): 98-104. (Zhou X T, Wang X, Chen M, et al.2017. Effect of arbuscular mycorrhizal fungi on xylem structure and defense-related genes of Salvia miltiorrhiza[J]. Chinese Journal of Agronomy, 33(4): 98-104.) 18 Agnolucci M, Battini F, Cristani C, et al.2015. Diverse bacterial communitiesare recruited on spores of different arbuscular mycorrhizal fungal isolates[J]. Biology and Fertility of Soils, 51(3): 379-389. 19 Alam M Z, McGee R, Hoque M A.2019. Effect of Arbuscular mycorrhizal fungi, selenium and biochar on photosynthetic pigments and antioxidant enzyme activity under arsenic stress in mung bean (Vigna radiata)[J]. Frontiers in Physiology, 10, 193. 20 Aharoni A, Giri AP, Deuerlein S, et al.2003. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants[J]. Plant Cell, 15(2): 2866-2884. 21 Arimura G, Ozawa R, Shimoda T, et al .2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature, 40(6795): 512-515. 22 Asghari H R, Cavagnaro T R.2012. Arbuscular mycorrhizas reduce nitrogen loss via leaching[J]. PLOS ONE, 7(1): 151-155. 23 Babikova Z, Gilbert L, Bruce T J A, et al.2013. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack[J]. Ecologyletters , 16(7): 835-843. 24 Balog A, Loxdale H D, Balint J, et al.2017. The?arbuscular?mycorrhizal fungus?rhizophagus?irregularis?affects?arthropod?colonization?on?sweet?pepperinboth?the?field and?greenhouse[J]. Journal of Pest Science, 90(3): 935-946. 25 Barto K E, Hilker M, Müller F, et al.2011. The fungal fast lane: Common mycorrhizal networks extend bioactivezones of allelochemicals in soils. Plos One, 6(11): e27195. 26 Battini F, Cristani C, Giovannetti M, et al.2016. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont rhizophagus intraradices[J]. Microbiological Research, 183: 68-79. 27 Ben L R, Meddich A, Bechtaoui N.2019. Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of medicago sativa to salt stress[J]. Gesunde Pflanzen, 71(2): 135-146 28 Bernaola L, Cosme M, Schneider R W, et al.2018. Belowground?Inoculation with?arbuscularmycorrhizal?fungi?increases?local?and?systemic?susceptibility of rice?plants?to?different?pest?organisms[J]. Frontiers in Plant Science, 9. 29 Birch A, Nicholas E, Begg G S, et al .2011. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global cropproductionsystems[J]. Journal of Experimental Botany, 62(10): 3251-3261. 30 Borie F R, Rubio R, Morales A, et al.2000. Relationships between arbuscular mycorrhizal hyphal density and glomalin production with physical and chemical characteristics of soils underno-tillage[J]. Revista Chilena De Historia Natural, 73: 749-756. 31 Chamberlain K, Guerrieri E, Pennacchio F, et al.2001. Can aphid-induced plant signals betransmitted aerially and through the rhizosphere?[J]. Biochemical Systematics and Ecology, 29(10): 1063-1074. 32 Campos D S, Maryluce A, Barbosa D S, et al.2017. Application of arbuscular mycorrhizal fungi during the acclimatization of?Alpinia purpurata?to induce tolerance to?Meloidogyne arenaria[J]. Plant Pathology Journal, 33(3): 329-336. 33 Chang W, Sui X, Fan X X, et al.2018. Arbuscular?mycorrhizal?symbiosis modul ates antioxidant response and ion distribution in salt-stressed elaeagnus angustifolia seedlings[J]. Frontiers in Microbiology, 9. DOI: 10.3389/fmicb.2018.00652 34 Cheng A X, Lou Y G, Mao Y B, et al.2007a. Plant terpenoids: Biosynthesis and ecological functions[J]. Journal of Integrative Plant Biology, 49(2): 179-186. 35 Cheng A X, Xiang C Y, Li J X, et al.2007b. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes[J]. Phytochemistry, 68(12): 1632-1641. 36 Chen S C, Zhao H J, Zou C C, et al.2017. Combined?inoculation?with?multiple?arbuscular?mycorrhizal?fungi?improves?growth, nutrient?uptake?and photosynthesis?in?cucumber?seedlings[J]. Frontiers in Microbiology, 8. DOI: 10.3389/fmicb.2017.02516 37 Chen S T, He L Y, Lee Y, et al.2014. Effect of rhizobium sp. w33 on copper accumulation and organic exudations of different plants grown on copper-contaminated soil[J]. Acta Scientiae Circumstantiae, 34(8): 2077-2084. 38 Conrath U, Beckers G J M, Flors V, et al.2006. Priming: Getting ready for battle[J]. Molecular Plant-Microbe Interactions, 19(10): 1062-1071. 39 Constabel C P, Barbehenn, Raymond, et al.2008. Defensive roles of polyphenol oxidase in plants[M].//Schaller A (eds.). Induced Plant Resistance to Herbivory, Induced Plant Resistance to Herbivory. Springer, Dordrecht, 253-269. 40 Constabel C P, Bergey D R, Ryan C A, et al.1995. Systemin activates synthesis of wound-inducible tomato leaf poly phenol oxidase via the octadecanoid defense signaling pathway[J]. Proceedings of the National Academy of Sciences of the USA, 92(2): 407-411. 41 Cosme M, Lu J, Erb M, et al.2016. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling[J]. New Phytologist, 211(3): 1065-1076. 42 Dematheis F, Kurtz B, Vidal S, et al.2013. Multitrophic interactions among western corn?rootworm?glomus?intraradices?and?microbial?communities?inthe?rhizosphereand endorhiza?of?maize[J]. Frontiers in Microbiology, 4, DOI: 10.3389/fmicb.2013.00357 43 Dicke M, Bruin J.2001. Chemical information transfer between plants: Back to the future. Biochem[J]. Biochemical Systematics and Ecology, 29: 981-994 44 Dudareva N, Pichersky E, Gershenzon J.2004. Biochemistry of plant volatiles[J]. Plant Physiology, 135(4): 1893-1902. 45 Elsen A, Baimey H, Sweenen R, et al.2003. Relative mycorrhizal dependency and mycorrhiza nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility[J]. Plant Soil, 256: 303-313. 46 Felton G W, Donato K, delvecchio R J, et al.1989. Activation of plant foliar oxidases byinsectfeeding reduces nutritive quality of foliage for noctuid herbivores[J]. Journal of Chemicalecology, 15(12): 2667-2694. 47 Frew A, Powell J R, Hiltpold I, et al.2017a. Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore[J]. Soil Biology&Biochemistry, 112: 117-126. 48 Frew A, Powell J R, Hiltpold I, et al.2017b. Arbuscular?mycorrhizal?fungi?promote?silicon?accumulation?inplant?roots, reducing?the?impacts?of?rootherbivoryp[J]. Plant and Soil, 419(1-2): 423-433. 49 Gange A C, West H M.1994. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in plantago lanceolata L[J]. New Phytologist, 128: 79-87. 50 Giovannetti M, Fortuna P, Citernesi A S, et al.2001. The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytologist, 151(3): 717-724. 51 Gregory P J, Johnson S N, Newton A C, et al.2009. Integrating pests and pathogens into the climate change food security debate[R]. Rothamsted Res, Harpenden, England. 52 Guerrieri E, Lingua G, Digilio M C, et al.2004. Do interactions between plant roots and therhizosphere affect parasitoid behaviour?[J]. Ecological Entomology, 29(6): 753-756. 53 Gómez B M J, Ortuño M F, Nortes P A, et al.2018. Effectiveness of bacterial inoculation in alleviation of salinity on water status, mineral content, gas exchange and photosyntheticparameters of Viburnum tinus L. plants[J]. Scientiahorticulturae, 237: 303-310. 54 Hansen D J, Dayanandan P, Kaufman P B, et al.1976. Ecological adaptations of salt-marsh grass, distichlis-spicata (Gramineae), and environmental-factors affecting its growth and distribution[J]. American Journal of Botany, 63(5): 635-650. 55 Heil M, Ton J.2008. Long-distance signalling in plant defence[J]. Trends in Plant Science, 13(6): 264-272. 56 Hempel S, Stein C, Unsicker S B, et al.2009. Specific bottom-up effects of arbuscular mycorrhizal fungi across a plant-herbivore-parasitoid system[J]. Oecologia, 160(2): 267-277. 57 Hijri M.2016. Analysis of a large dataset of mycorrhiza inoculation field trialson potato shows highly significant increases in yield[J]. Mycorrhiza, 26(3): 209-214. 58 Huang N X, Enkegaard A, Oshome L S, et al.2011. The banker plant method in biological control[J]. Critical Reviews in Plant Sciences, 30(3): 259-278. 59 Hussey R S, Roncadorl R W.1982. Vesicular arbuscular mycorrhizae may limit nematode activity and improve plant growth[J]. Plant Disease, 66(1): 9. 60 Imperiali N, Chiriboga X, Schlaeppi K, et al.2017. Combined?field?inoculations?of?pseudomonas?bacteria, arbuscular?mycorrhizal?fungi, and entomopathogenic?nematodes?and?their?effects?on?wheat?performance[J]. Frontiers in Plant Science, 8. DOI: 10.3389/fpls.2017.01809. 61 Jallow M F A, Dugassa G D, Vidal S, et al.2004. Indirect interactionbetween all unspecialised endophytic fungus and a polyphagousmoth[J]. Basic and Applied Ecology, 5: 183-191. 62 Jiang J H, Lee Y I, Marc A C, et al.2015. Characterization and colonization of endomycorrhizal Rhizoctonia fungi in the medicinal herb anoectochilus formosanus (Orchidaceae)[J]. Mycorrhiza, 25(6): 431-445. 63 Johansson J F, Paul L R, Finlay R D, et al.2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J]. Fems Microbiology Ecology, 48(1): 1-13. 64 Johnson, S N, Benefer C M, Frew A, al.2016. New frontiers in belowground ecology for plant protection from root-feeding insects[J]. Applied Soil Ecology, 108: 96-107. 65 Johnson S N, Hallett P N, Gillespie T L, et al.2010. Below-ground herbivory and root toughness: A potentialmodel system using lignin-modified tobacco[J]. Physiological Entomology, 35(2): 186-191. 66 Jung S C, Martinez M A, Lopez R J A, et al.2012. Mycorrhiza-Induced resistance and priming of plant defenses[J]. Journal of Chemical Ecology, 38(6): 651-664. 67 Kapoor R.2008. Induced resistance in mycorrhizal tomato iscorrelated to concentration of jasmonic acid[J]. Online Journal of Biological Sciences, 8: 49-56. 68 Kapoor R, Anand G, Gupta P, et al.2017. Insight?into?the?mechanisms?of enhanc;ed?productionof?valuable?terpenoids?by?arbuscular?mycorrhiza[J]. Phytochemistry Reviews, 16(4): 677-692. 69 Kapoor R, Giri B, Mukerji K G, et al.2002a. Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil[J]. Journal Ofthe Science of Food and Agriculture, 82(4): 339-342. 70 Kapoor R, Giri B, Mukerji K G, et al.2002b. Glomus macrocarpum: A potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveoens L.) and Carum(Trachyspermum ammi (Linn.) Sprague)[J]. World Journal of Microbiology & Biotechnology, 18(5): 459-463. 71 Kapoor R, Giri B, Mukerji K G, et al.2004. Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer[J]. Bioresource Technology, 93(3): 307-311. 72 Kappers I F.2005. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis[J]. Science, 309(5743): 2070-2072. 73 Karagiannidis N, Thomidis T, Lazari D, et al.2011. Effect of three greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants[J]. Scientia Horticulturae, 129(2): 329-334. 74 Karban R, Baldwin I T, Baxter?K J, et al.2000. Communication between plants: Induced resistance in wild tobacco plants following clipping of neighboring sagebrush[J]. Oecologia, 125(1): 66-71. 75 Keerio M I.2001. Nitrogenase activity of soybean root nodules inhibited after heat stress[J]. Journal of Applied Sciences, 1(3): 297-300. 76 Khaosaad T, Vierheilig H, Nell M, et al.Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp. Lamiaceae)[J]. Mycorrhiza, 2006, 16(6):443-446. 77 Koricheva J, Gange A C, Jones T, et al.2009. Effects of mycorrhizal fungi on insect herbivores: A meta-analysis[J]. Ecology, 90(8): 2088-2097. 78 Kruger M, Krueger C, Walker C, et al.2012. Phylogenetic reference data for systematics andphylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level[J]. New Phytologist, 193(4): 970-984. 79 Langenheim J H.1994. Higher-plant terpenoids-aphytocentric overview of their ecological roles[J]. Journal of Chemical ecology, 20(6): 1223-1280. 80 Lax P, Becerra A G, Soteras F, et al.2011. Effect of the arbuscular mycorrhizal fungus Glomus intraradices on the false root-knot nematode Nacobbus aberrans in tomatoplants[J]. Biology and Fertility of Soils, 47(5): 591-597. 81 Lee B R, Muneer S, Avice J C, et al.2012. Mycorrhizal colonisation and P-supplement effectson N uptake and Nassimilation in perennial ryegrass under well-watered and drought-stressed conditions[J]. Mycorrhiza, 22(7): 525-534. 82 Leroux O, Leroux F, A Bagniewska Z A, et al.2011. Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales)[J]. Micron, 42(8): 863-870. 83 Lu J, Robert C A M, Riemann M, et al.2015. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance[J]. Plant Physiology, 167(3): 1100. 84 Lucélia C, Claúdio R F S S, Admir J G, et al.2015. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas bytrace elements: Mechanisms and major benefits of their applications[J]. World Journal of Microbiology and Biotechnology, 31(11): 1655-1664. 85 Maffei M E.2010. Sites of synthesis biochemistry and functional role of plant volatiles[J]. South African Journal of Botany, 76(4): 612-631. 86 Malik R J, Ali J G, Bever J D, et al .2018. Mycorrhizal?composition influences plant anatomical defense and impacts herbivore growth and survival in a life-stage dependent manner[J]. Pedobiologia, 66: 29-35. 87 Mandal S, Upadhyay S, Wajid S, et al.2015. Arbuscular mycorrhiza increase artemisinin accumulation in artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels[J]. Mycorrhiza, 25(5): 45-357. 88 Marro N, Caccia M, Doucet M E, et al.2018. Mycorrhizas reduce tomato root penetration by false root-knot nematode Nacobbus aberrans[J]. Applied Soil Ecology, 124: 262-265. 89 Massalha H, Korenblum E, Tholl D, et al.2017. Small molecules below-ground: The role ofspecialized metabolites in the rhizosphere[J]. Plant Journal, 90(4): 788-807. 90 Massey F P, Hartley S E.2009. Physical defences wear you down: Progressive and irreversible impacts of silica on insect herbivores[J]. Journal of Animal Ecology, 78(1): 281-291. 91 Mercke P, Kappers I F, Verstappen F W A, et al.2004. Combined transcript and metabolite analys is reveals genes involved in spider mite induced volatile formation in cucumber plants[J]. Plant Physiology, 135(4): 2012-2024. 92 Minton M M, Barber N A, Gordon L L, et al.2016. Effects?of?arbuscular mycorrhizal?fungi?on?herbivory?defense?in?two?Solanum?(Solanaceae) species[J]. Plant Ecology and Evolution, 149(2): 157-164. 93 Mutune B, Ekesi S, Niassy S, et al.2016. Fungal endophytes as promising tools for the management of bean stem maggot Ophiomyia phaseoli on beans Phaseolus vulgaris[J]. Journal of Pest Science, 89(4): 993-1001. 94 Nardi S, Concheri G, Pizzeghello D, et al.2000. Soil organic matter mobilization by root exudates[J]. Chemosphere, 41(5): 653-658. 95 O'Brian M R, Vance C P, VandenBosch K A, et al.2009. Legume focus: Model species sequenced, mutagenesis approaches extended, and debut of a newmodel[J]. Plant Physiology, 151(3): 969-969. 96 Qi J F, Zhang M, Lu C K, et al.2018. Ultraviolet-B?enhances?the?resistance of?multiple?plant?species?to?lepidopteran?insect?herbivory through?the?jasmonic?acidpathway[J]. Scientific Reports, 8: 277. 97 Rasmann S, Kollner T G, Degenhardt J, et al.2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots[J]. Nature, 434(7034): 732-737. 98 Reda E A, Rabab A M.2019. Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis[J], International Journal of Phytoremediation, 21(7): 663-671 99 Reynolds O L, Keeping M G, Meyer J H, et al.2009. Silicon-augmented resistance of plants to herbivorous insects: A review[J]. Annals of Applied Biology, 155(2): 171-186. 100 Russo G, Carotenuto G, Fiorilli V.2019. Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi[J]. PLOS Genetics, 9(3). 101 Sanchez B P, Sanmartin N, Pastor V, et al.2018. Mycorrhizal?tomato?plants?fine?tunes?thegrowth-defence?balance?upon?N?depleted?root?environments[J]. Plant Cell and Environment, 41(2): 406-420. 102 Schausberger P, Peneder S, Juerschik S, et al.2012. Mycorrhiza changes plant volatiles to attract spider mite enemies[J]. Functional Ecology, 26(2): 441-449. 103 Schnee C, Kollner T G, Held M, et al.2006. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores[J]. Proceedings of the National Academy of Sciences of the USA, 103(4): 1129-1134. 104 Schouteden N, Waele D D, Panis B, et al.2015. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: A review of the mechanisms involved[J]. Frontiers in Microbiology, 6. 1280. 105 Sharma E, Anand G, Kapoor R, et al.2017. Terpenoids?in?plant?and?arbuscular mycorrhiza-reinforced?defence?against?herbivorous?insects[J]. Annals of Botany, 119(5): 791-801. 106 Sharma I P, Sharma A K.2015a. Application of arbuscular mycorrhiza for managing root-knot disease in tomato (Lycopersicon esculentum) under glass-house conditions in Pantnagar India[J]. African Journal of Microbiology Research, 9(7): 463-468. 107 Sharma I P, Sharma A K.2015b. Effects of initial inoculums levels of?Meloidogyne incognita?J2 on development and growth of tomato cv.PT-3 under control conditions[J]. African Journal of Microbiology Research, 9(20): 1376-1380. 108 Sharma I P, Sharma A K.2017. Co-inoculation?of?tomato?with?an?arbuscular?mycorrhizal?fungus?improves?plant?immunity?and?reduces root-knot nematode?infection[J]. Rhizosphere, 4: 25-28. 109 Shimoda T, Ozawa R, Sano K, et al.2005. The involvement of volatile infochemicals from spider mites and from food-plants in prey location of the generalist predatory mite Neoseiulus californicus[J]. Journal of Chemical Ecology, 31(9): 2019-2032. 110 Shrivastava G, Ownley B H, Auge R M, et al.2015. Colonization by?arbuscular?mycorrhizal?andendophytic?fungi?enhanced terpene production in tomato plants and their defense againstaherbivorous insect[J]. Symbiosis, 65(2): 65-74. 111 Smith S E, Facelli E, Pope S, et al.2010. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas[J]. Plant and Soil, 326: 3-20. 112 Song Y Y, Zeng R S, Xu J F, et al.2010. Interplant communication of tomato plants through underground common mycorrhizal networks[J]. Plos One, 5(10): e13324-. 113 Sugimoto K, Matsui K, Iijima Y, et al.2014. Intake and transformation to aglycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense[J]. Proceedings of the National Academy of Sciences of the USA, 111(19): 7144-7149. 114 Takabayashi J, Dicke M.1996. Plant-carnivore mutualism through herbivore-induced carnivore attractants[J]. Trends in Plant Science, 1(4): 109-113. 115 Unsicker S B, Kunert G, Gershenzon J, et al.2009. Protective perfumes: The role of vegetative volatiles in plant defense against herbivores[J]. Current Opinion in Plant Biology, 12(4): 479-485. 116 van der Heijden M G A, Martin F M, Selosse M A, et al.2015. Mycorrhizal ecology andevolution: The past, the present, and the future[J]. New Phytologist, 205(4): 1406-1423. 117 Walker V, Couillerot O, Von F A, et al.2012. Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions[J]. Plant and Soil, 356(1-2): 151-163. 118 Whiteside M D, Digman M A, Gratton E, et al.2012. Organicnitrogen uptake by arbuscularmycorrhizal fungi in a borealforest[J]. Soil Biology and Biochemistry, 55: 7-13. 119 Yeom H J, Kang J S, Kim G H, et al.2012. Insecticidal and acetylcholine esterase inhibitionactivity of apiaceae plant essential oils and their constituents against adults of german cockroach (Blattella germanica)[J]. Journal of Agricultural and Food Chemistry, 60(29): 7194-7203. 120 Zhang W Z, Gu L J, Duan T Y, et al.2018. Research progress on the mechanism of AM?fungi?for improving plant stress resistance[J]. Pratacultural Science, 35(3): 491-507. 121 Zubek S, Stojakowska A, Anielska T, et al.2010. Arbuscular mycorrhizal fungi alter thymolderivative contents of Inula ensifolia L.[J]. Mycorrhiza, 20(7): 497-504. |
|
|
|