|
|
Effect of Uniconazole on Photosynthetic Characteristics and Genes Expression of Related Transcription Factors for Coix (Coix lachryma-jobi) Seedlings Under Low Temperature Stress |
HUANG Yu-Lan*, YUE Cai-Jun, HAN Yi-Qiang, WANG Jing-Wei, WANG Li-Yan, JIA Gui-Yan, SUN Li-Fang |
College of Biological Life, Heilongjiang Bayi Agricultural University, Daqing 163319, China |
|
|
Abstract Coix (Coix lachryma-jobi) is a crop of food and medicine, and has very high nutritional and medicinal value. But its genetic resources are scarce. Uniconazole (S3307) is plant growth retardant belong to triazole category, which can inhibit the biosynthesis of endogenous gibberellin and has obvious effects on plant growth and stress resistance. In order to obtain and dig the genetic data and function of Coix lachryma-jobi and explore the alleviating effect of S3307 on low temperature stress of coix seedlings, 'Yiliao 5' was used as experimental material, Li-6400XTR photosynthetic apparatus and transcriptome sequencing technology were used to explore the effects of S3307 on photosynthetic characteristics and transcription factor gene expression of coix seedlings under low temperature stress. The results showed that addition of 5 mg/L S3307 could significantly increase the chlorophyll contents of coix leaves under low-temperature. Meanwhile, the net photosynthetic rate, transpiration rate and stomatal conductivity enhanced 138.1%, 59.59% and 50.15%, respectively. Through screening analysis and Swiss-Prot database annotation, 4 differentially expressed genes (DEGs) of WRKY transcription factor, 6 DEGs of bZIP (basic leucine zipper), 9 DEGs of bHLH (basic helix-loop-helix) and 6 DEGs of AP2/ERF (APETALA2/ethylene-responsive factor) were obtained. The qRT-PCR was used to analyze the expression of 10 DEGs, and the changing trend was consistent with the results of transcriptome sequencing. The results of this study will help to reveal the mechanism of S3307 on photosynthetic characteristics and transcription factor expression characteristics of coix under low temperature stress, and provide a reference for further research on transcription factor function in response to low temperature stress.
|
Received: 16 April 2019
|
|
Corresponding Authors:
* , m18245990293@163.com
|
|
|
|
[1] 曹红利, 岳川, 王新超, 等. 2012. bZIP转录因子与植物抗逆性研究进展[J]. 南方农业学报, 43(8): 1094-1100. (Cao H L, Yue C, Wang X C, et al.2012. Advance in bZIP transcription factors related with plant stress resistance[J]. Journal of Southern Agriculture, 43(8): 1094-1100. [2] 陈嘉贝, 张芙蓉, 黄丹枫, 等. 2014. 盐胁迫下两个甜瓜品种转录因子的转录组分析[J]. 植物生理学报, 50(2): 150-158. (Chen J B, Zhang F R, Huang D F, et al.2014. Transcriptome analysis of transcription factors in two melon (Cucumis melo L.) cultivars under salt stress[J]. Plant Physiology Journal, 50(2): 150-158.) [3] 陈儒钢, 巩振辉, 逯明辉, 等. 2018. 植物抗逆反应中的转录因子网络研究进展[J]. 农业生物技术学报, 18(1): 126-134. (Chen R G, Gong Z H, Lu M H, et al.2018. Reaearch advance of the transcription factors networks related to plant adverse environmental stress[J]. Journal of Agricultural Biotechnology, 18(1): 126-134.) [4] 甘小虎, 何从亮, 阎庆久, 等. 2012. 矮壮素、多效唑对高温季节黄瓜育苗的影响[J]. 蔬菜, (7): 64-66. (Gan X H, He C L, Yan Q J, et al. 2012. Effects of dwarf and polyazole on cucumber seedling in high temperature season[J]. Vegetables, (7): 64-66.) [5] 高杨, 王杰, 石丽娟, 等. 2017. 叶面喷施烯效唑对谷子抗倒伏性状及光合色素含量的影响[J].山西农业科学, 45(8): 1232-1236. (Gao Y, Wang J, Shi L J, Ge J K, et al.2017. Effect of uniconazole on the lodging-resitance character and photosynthetic pigment of foxtail millet[J]. Journal of Shanxi Agricultural Sciences, 45(8): 1232-1236.) [6] 黄玉兰, 赵蕊, 向君亮, 等. 2019. 外源烯效唑对低温胁迫下薏苡幼苗的缓解效应的研究[J]. 中国中药杂志, 4(11): 423-429. (Huang Y L, Zhao R, Xiang J L, et al.2019. Study of exogenous uniconazole on alleviating low-temperatuer stress of coix seedlings[J]. China Journal of Chinese Materia Medica, 44(11): 423-429.) [7] 金永玲, 丛斌, 王丽艳, 等. 2015. 大垫尖翅蝗转录组分析[J]. 昆虫学报, 58(8): 817-825. (Jin Y L, Cong B, Wang L Y, et al.2015. An analysis of the transcription of Epacromius coerulipes[J]. Acta Entomologica Sinica, 58(8): 817-825) [8] 李祥栋, 潘虹, 陆秀娟, 等. 2018. 薏苡种质的主要营养组分特征及综合评价[J]. 中国农业科学, 51(5): 835-842. (Li X D, Pan H, Lu X J, et al.2018. Characteristics and comprehensive assessment of principal nutritional components in adlay landraces[J]. Scientia Agricultura Sinica, 51(5): 835-884.) [9] 麻继仙, 杨长楷, 但忠, 等. 2012. 50%矮壮素水剂对不同苗龄番茄幼苗的影响[J]. 现代农业科技, (4): 211-213. (Ma J X, Yang C K, Dan Z, et al. 2012. Effect of 50% dwarf hormone on tomato seedlings of different seedling ages[J].Modern Agricultural Technology, (4): 211-213.) [10] 乔润雨, 刘文锋, 刘泽群, 等. 2018. 绿色蔬菜叶片叶绿素含量与SPAD值相关性研究[J]. 国土与自然资源研究, (1): 80-82. (Qiao R Y, Liu W F, Liu Z Q, et al. 2018. Correlation analysis of chlorophuyll content and SPAD value in green vegetable leaves[J]. Territory and Natural Resources Study, (1): 80-82.) [11] 唐仕云, 杨丽涛, 李杨瑞. 低温胁迫下不同甘蔗品种的转录组比较分析[J]. 生物技术通报, 2018, 34(12): 26-34. (Tang S Y, Yang L T, Li Y R.Comparative analysis on transcriptome among different sugarcane cultivars under low temperature stress[J]. Biotechnology Bulletin, 2018, 34(12): 26-34.) [12] 袁琳琳, 王亚茹, 曾卫军, 等. 2018. 独行菜种子bHLH类转录因子基因家族及幼苗laICE1表达对冷胁迫的响应[J]. 西北植物学报, 38(1): 26-34. (Yuan L L, Wang Y R, Zeng W J, et al.2018. Members of the bHLH transcription factor family of Lepidium apetalum wild. seeds and the respone of lalCE1 expression in seedling to cold stress[J]. Journal of Northwest Plants, 38(1): 26-34.) [13] 甄红丽, 苑兆和, 冯立娟, 等. 2012. 矮壮素对大丽花生长发育和内源激素含量的影响及相关性分析[J]. 草业科学, 29(1): 76-82. (Zhen H L, Yuan Z H, Feng L J, et al.2012. Effects of chlormequat chloride on the growth and endogenous hormones contents of Dahlia pinnata and their correlation analysis[J]. Pratacultureal Science, 29(1): 76-82.) [14] 郑春芳, 陈继浓, 仇建标, 等. 2016. 烯效唑对低温胁迫下秋茄幼苗光合作用与抗氧化系统的影响[J]. 植物生理学报, 52(1): 109-116. Zheng C F, Chen J N, Qiu J B, et al. 2016. Effect of uniconazole on photosynthesis and antioxidant system in Kandelia obovata seedlings under low temperature stress[J].Plant Physiology Journal, 52(1): 109-116.) [15] Earl H J, Tollenaar M.1997. Maize left absorptance of photosynthetically active radiation and its estimation using a chlorophyll meter[J]. Crop Science, (37): 436-440. [16] Hernandez-Garcia C M, Finer J J.2014. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Science, 217-218(1): 109-119. [17] Lee M H, Jeon H S, Kim H G, et al.2017. An Arabidopsis NAC transcriptionfactor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164[J]. New Phytologist, 214(1): 343-360. [18] Li B, Colin N D.2011. RSEM: Accurate transcript quantification from RNA Seq data with or without a reference genome[J]. BMC Bioinformatics, 12: 323. [19] Liu F, Li X, Wang M, et al.2018. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection[J].Plant Biotechnology Journal, 16(4): 911-925. [20] Liu W, Tai H, Li S, et al.2014. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism[J]. New Phytologist, 201(4): 1192-1204. [21] Mishra A, Mishra K B, H ermiller I I, et al.2011. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions[J]. Plant Signaling & Behavior, 6(2): 301-310. [22] Mohabbati F, Paknejad F, Vazan S, et al.2013. Protective effect of exogenous PGRs on chlorophyll fluorescence and membrane integrity of rice seedlings under chilling stress[J]. Research Journal of Applied Sciences Engineering & Technology, 5(1): 146-153. [23] Souza T C D, Magalh es P C, Castro E M D, et al.2013. The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance[J].Acta Physiologiae Plantarum, 35(2): 515-527. [24] Strain H H, Svec W A.1996. Extraction, separation, estimation and isolation of the chlorophylls[J]. The Chlorophylls, 1: 22-66. [25] Tweneboah S, Oh S K.2017. Biological roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in solanaceous crops[J]. Journal of Plant Biotechnology, 44(1): 1-11. [26] Tripathi P, Rabara R C, Rushton P J.2014. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants[J]. Planta, 239(2): 255-266. [27] Wang Y, Shu Z, Wang W, et al.2016. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses[J]. Biologia Plantarum, 60(3): 1-9. [28] Zhang Z J, Huang R F.2010. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis[J]. Plant Molecular Biology, 73(3): 241-249. |
[1] |
YANG Han, ZHANG Yang-Hai, WANG Min, KANG Yu-Xin, ZHU Hai-Jing, LAN Xian-Yong, QU Lei, YAN Hai-Long, PAN Chuan-Ying. Polymorphisms of 3'-UTR of POU1F1 Gene and Its Association with Growth Traits in Shaanbei White Cashmere Goats (Capra hircus)[J]. 农业生物技术学报, 2019, 27(7): 1224-1232. |
|
|
|
|