|
|
Recombinant Expression of Common Carp (Cyprinus carpio) c-type Lysozyme in Pichia pastoris and Its Antibacterial Activity |
YAN Qian-Qian, TAO Yan*, LI Wen, XIE Jing, QIAN Yun-Fang |
College of Food Science and Technology/Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China |
|
|
Abstract The c-type lysozyme is a key immune protein to resist bacterial infection for the fish with innate immune system. Common carp (Cyprinus carpio) c-type lysozyme has some characteristics that are common in fish c-type lysozyme: Its N-terminal is a signal peptide sequence, and its C-terminal region is a mature peptide sequence. Glu35 and Asp51 are 2 amino acid residues located in the mature peptide and form the active site of the c-type lysozyme. In addition, 8 conserved cysteine residues exist in the mature peptide and form 4 pairs of disulfide bonds in spatial structure which are related to the activity and stability of the c-type lysozyme. In the present study, the cDNA encoding common carp c-type lysozyme mature peptide was cloned by reverse transcription PCR (RT-PCR), and the 381 bp cDNA encoded the mature peptide consisting of 127 residues. PCR were performed to add XhoⅠ restriction site and 6×His-tag to its 5' end, and XbaⅠ site to its 3' end. This target gene was named CLYc (common carp c-type lysozyme), and ligated to pPICZαA vector and electronically transformed into competent Pichia pastoris X-33. The yeast transformants containing multi-copy gene insertions were screened using high-concentration zeocin. The target protein was induced for 120 h with 1.5% methanol at 29 ℃, 250 r/min. The recombinant protein with molecular weight of 15.4 kD was purified by immobilized metal ion affinity chromatography (IMAC); Western blot and MALDI-TOF/TOF mass spectrometry analysis proved that this recombinant protein was the expected recombinant CLYc, and its expression yield was about 40 mg/L. The antimicrobial activity of the culture medium supernatant containing recombinant CLYc was tested on Gram-positive (including Listeria monocytogenes and Staphylococcus aureus) and Gram-negative (including Escherichia coli and Vibrio parahemolyticus) bacteria using micro liquid-bacterial colony notation, demonstrating that the crude culture medium supernatant had notable antimicrobial activity against these bacteria, implying the potential use of cell-free P. pastoris medium in fish feed without the need for further peptide purification. Furthermore, the minimum inhibitory concentration (MIC) of purified recombinant CLYc was determined on these bacteria and Bacillus subtilis, indicating that the recombinant CLYc had the same MIC for L. monocytogenes, B. subtilis, E. coli and V. parahemolyticus. The results of this study provide a technical approach for the development and production of natural antibacterial agents from fish.
|
Received: 24 February 2019
|
|
Corresponding Authors:
ytao@shou.edu.cn
|
|
|
|
[1] 冯亚东, 陶妍, 李雯, 等. 2017. 斑点叉尾鮰C型溶菌酶在毕赤酵母中的表达及其抑菌活性[J]. 生物技术通报, 33(7): 195-202. (Feng Y D, Tao Y, Li W, et al.2017. Expression of channel catfish c-type lysozyme in Pichia pastoris and its bacteriostatic activity[J]. Biotechnology Bulletin, 33(7): 195-202.) [2] 金虹, 李海帅, 帖金凤, 等. 2018. 应用微量稀释法测定消毒剂最小抑菌浓度方法的建立[J]. 中国消毒学杂志, 35(11): 802-803. (Jin H, Li H S, Tie J F, et al.2018. Establishment of a broth microdilution MIC testing method for disinfectants[J]. Chinese Journal of Disinfection, 35(11): 802-803.) [3] 李洪淼, 王红宁, 许钦坤. 2005. 毕赤酵母高密度发酵研究进展[J]. 生物技术通讯, 16(2): 210-212. (Li H M, Wang H N, Xu Q K.2005. Advance of Pichia pastoris on high-density fermentation[J]. Letters in Biotechnology, 16(2): 210-212.) [4] 李雯, 陶妍. 2017. 鲤鱼g型溶菌酶基因的cDNA克隆及其在毕赤酵母中的表达[J]. 福建农林大学学报(自然科学版), 46(1): 81-88. (Li W, Tao Y.2017. cDNA cloning of g-type lysozyme gene from common carp and its expression in Pichia pastoris[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 46(1): 81-88.) [5] 瞿兰, 叶星, 田园园, 等. 2012. 罗非鱼3种c型溶菌酶重组蛋白的制备及与几种鱼虾溶菌酶溶菌谱的比较[J]. 生物技术通报, 20(11): 162-164. (Qu L, Ye X, Tian Y Y, et al.2012. Preparation of three c-type recombinant lysozymes of Oreochromis aureus and comparation of their bacteriolytic spectrum with several other lysozymes[J]. Biotechnology Bulletin, 20(11): 162-164.) [6] 宋长丰, 陶妍, 赵冬梅, 等. 2015. 斑点叉尾鮰铁调素成熟肽在毕赤酵母中的表达及其抑菌活性[J]. 农业生物技术学报, 23(3): 380-387. (Song C F, Tao Y, Zhao D M, et al.2015. Expression of channel catfish (Ictalurus punctatus) hepcidin mature peptide in Pichia pastoris and its antibacterial activity[J]. Journal of Agricultural Biotechnology, 23(3): 380-387.) [7] 孙风敏, 韩焱, 李文利. 2014. 基于密码子优化的蛋白酶K在毕赤酵母中的表达及分离纯化[J]. 微生物学通报, 41(11): 2198-2207. (Sun F M, Han Y, Li W L.2014. Expression and purification of codon optimized proteinase K in Pichia pastoris[J]. Microbiology China, 41(11): 2198-2207.) [8] 孙立人, 陶妍, 高北. 2017. 斑点叉尾鮰LEAP2成熟肽在毕赤酵母中的表达及其抑菌活性[J]. 上海海洋大学学报, 26(1): 23-30. (Sun L R, Tao Y, Gao B.2017. Expression of channel catfish (Ictalurus punctatus) LEAP2 mature peptide in Pichia pastoris and its antibacterial activity[J]. Journal of Shanghai Ocean University, 26(1): 23-30.) [9] 孙玮遥, 宋增健, 王向东, 等. 2017. 重组毕赤酵母表达蛋清溶菌酶发酵条件的优化[J]. 中国酿造, 36(2): 55-56. (Sun W Y, Song Z J, Wang X D, et al.2017. Optimization of fermentation conditions for expression of egg white lysozyme by recombination Pichia pastoris[J]. China Brewing, 36(2): 55-56.) [10] 王强厚, 陶妍, 崔旭, 等. 2018. 三疣梭子蟹c型溶菌酶在毕赤酵母中的表达及其抑菌活性[J]. 生物技术通报, 34(10): 135-142. (Wang Q H, Tao Y, Cui X, et al.2018. Expression of swimming crab c-type lysozyme in Pichia pastoris and its bacteriostatic activity[J]. Biotechnology Bulletin, 34(10): 135-142.) [11] 吴慧, 陶妍. 2017. 斑点叉尾鮰NK-lysin成熟肽在毕赤酵母中的表达[J]. 淡水渔业, 47(1): 78-83. (Wu H, Tao Y.2017. Expression of Ictalurus punctatus NK-lysin mature peptide in Pichia pastoris[J]. Freshwater Fisheries, 47(1): 78-83.) [12] 杨梅, 温真, 林丽玉, 等. 2011. 毕赤酵母蛋白表达系统研究进展[J]. 生物技术通报, 4(27): 46-51. (Yang M, Wen Z, Lin L Y, et al.2011. Advances of expression system of Pichia pastoris protein[J]. Biotechnology Bulletin, 4(27): 46-51.) [13] 张海波, 谭洪新, 王兴强, 等. 2009. 凡纳滨对虾溶菌酶基因在大肠杆菌中的表达和活性检测[J]. 海洋科学, 33(1): 48-53. (Zhang H B, Tan H X, Wang X Q, et al.2009. Expression of Litopenaeus vannamei lysozyme gene in Escherichia coli and evaluation of its lytic activity[J]. Marine Sciences, 33(1): 48-53.) [14] 张士璀, 许娜. 2014. 动物型溶菌酶研究新进展[J]. 中国海洋大学学报, 44(6): 46-51. (Zhang S C, Xu N.2014. Advance in study of animal lysozymes[J]. Journal of Ocean University of China, 44(6): 46-51.) [15] 郑清梅, 吴锐全, 叶星. 2006. 水生动物溶菌酶的研究进展[J]. 上海水产大学学报, 15(4): 483-487. (Zheng Q M, Wu R Q, Ye X.2006. The research advance of lysozyme in aquatic animals[J]. Journal of Shanghai Fisheries University, 15(4): 483-487.) [16] Ding J F, Li J, Bao Y B, et al.2011. Molecular characterization of a mollusk chicken-type lysozyme gene from Haliotis discus hannai Ino, and the antimicrobial activity of its recombinant protein[J]. Fish & Shellfish Immunology, 30(1): 163-172. [17] Harikrishnan R, Kim J S, Kim M C, et al.2011. Molecular characterization, phylogeny, and expression pattern of c-type lysozyme in kelp grouper, Epinephelus bruneus[J]. Fish & Shellfish Immunology, 31(4): 588-594. [18] He C B, Yu H N, Liu W D, et al.2012. A goose-type lysozyme gene in Japanese scallop (Mizuhopecten yessoensis): cDNA cloning, mRNA expression and promoter sequence analysis[J]. Comparative Biochemistry and Physiology Part B: 162(1-3): 34-43. [19] Huang P, Shi J L, Sun Q W, et al.2018. Engineering Pichia pastoris for efficient production of a novel bifunctional Strongylocentrotus purpuratus invertebrate-type lysozyme[J]. Applied Biochemistry and Biotechnology, 186(2): 459-475. [20] Jollès P, Jollès J.1984. What’s new in lysozyme research? Always a model system, today as yesterday[J]. Molecular and Cellular Biochemistry, 63(2): 165-189. [21] Ma J, Bu Y, Li X.2015. Immunological and histopathological responses of the kidney of common carp (Cyprinus carpio L.) sublethally exposed to glyphosate[J]. Environmental Toxicology and Pharmacology, 39(1): 1-8. [22] Meng D M, Zhao J F, Ling X, et al.2017. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris[J]. Protein Expression and Purification, 130: 90-99. [23] Peregrino-Uriarte A B, Muhlia-Almazan A T, Arvizu-Flores A A, et al.2012. Shrimp invertebrate lysozyme i-lyz: Gene structure, molecular model and response of c and i lysozymes to lipopolysaccharide (LPS)[J]. Fish & Shellfish Immunology, 32(1): 230-236. [24] Sha Z X, Wang Q L, Liu Y, et al.2012. Identification and expression analysis of goose-type lysozyme in half-smooth tongue sole (Cynoglossus semilaevis)[J]. Fish & Shellfish Immunology, 32(5): 914-921. [25] Schägger H, von Jagow G.1987. Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of protein in the range from 1 to 100 ku[J]. Analytical Biochemistry, 166(2): 368-379. [26] Tao Y, Song C F, Li W.2017. Expression of the zebrafish β-defensin 3 mature peptide in Pichia pastoris and its purification and antibacterial activity[J]. Applied Biochemistry and Microbiology, 53(6): 661-668. [27] Yue X, Liu B Z, Xue Q G.2011. An i-type lysozyme from the Asiatic hard clam Meretrix meretrix potentially functioning in host immunity[J]. Fish & Shellfish Immunology, 30(2): 550-558. [28] Zhao J M, Song L S, Li C H, et al.2007. Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein[J]. Molecular Immunology, 44(6): 1198-1208. |
|
|
|