|
|
Advances in Studies on Molecular Mechanisms of Rapid Growth of Bamboo Species |
, , |
|
|
Abstract Abstract Bamboo is the fastest high growing plant and has attracted much attention of researchers. In recent years, the molecular mechanism of rapid growth of bamboo plants has been the hot research focus, and has achieved some research results. Based on the previous studies on the height growth of bamboo plants, the dynamic changes of height growth rhythm, cell structure, physiology and biochemistry and endogenous hormones in bamboo shoots were discussed in this paper. At the same time, we combined with analysis of transcriptome miRNA and proteome data. We systematically summarized the research progress of the mechanism of rapid growth of bamboo plants, and pointed out the future research direction of bamboo plants.
|
Received: 15 September 2017
Published: 02 May 2018
|
|
|
|
[1]安礼渝, 王志敏, 汤青林, 等.2015. 转录因子在茄科植物中的研究进展[J]. 生物技术通报, 31(6):13-19. (Ann L Y, Wang Z M, Tang Q L, et al. 2015. Research Progress of Transcription Factors in Solanaceae Plants[J]. Biotechnology Bulletin, 31(6):13-19.)[J].生物技术通报, 2015, 31(6):13-19
[2]崔凯.2011. 毛竹茎秆快速生长的机理研究[D]. 博士学位论文, 中国林业科学研究院, 导师:张建国. pp. 29-35(Cui K. 2011.The Mechanism Research of Fast-Growing Culms of Phyllostachys heterocycla[D]. Thesis for Ph.D., China Academy of Forestry Sciences, Supervisor: Zhang J G. pp. 29-35.)
[3]丁兴萃.1997.毛竹笋体生长发育过程中内源激素的动态分析[J]. 竹子研究汇刊, 16(2):53-62. (Ding X C. 1997. Dynamic analysis of endogenous hormones during development of Moso Bamboo shoot[J]. Journal of Bamboo Research, 16(2):53-62.)[J].竹子研究汇刊, 1997, 16(2):53-62
[4]丁祖福.1982. 竹笋生长为什么特别迅速[J]. 植物杂志, (1):23-24. (Ding Z F. 1982. Why is the growth of bamboo shoots particularly rapid[J]. The Plant Journal, (1):23-24.)[J].植物杂志, 1982, (1):23-24
[5]窦营, 余学军.2008. 世界竹产业的发展与比较[J]. 世界农业, (7):18-21. (Dou Y, Yu X J. 2008. The development and comparison of bamboo industry in the world[J]. World Agriculture, (7): 18-21.)[J].世界农业, 2008, (7):18-21
[6]方炎明, 丁雨龙.2016. 植物生物学专题[M]. 中国林业出版社, 北京. pp. 160. (Fang Y M, Ding Y L. 2016. Special topics on Plant Biology[M]. Chinese Forestry Publishing House, Beijing. pp. 160.)
[7]董丽娜.2007. 毛毛竹秆茎高生长的发育解剖研究[D]. 硕士学位论文, 南京林业大学, 导师:丁雨龙. pp. 38-39. ( Dong L N. 2007. Studies on Developmental Anatomy of Elongated Growth about Bamboo Culms[D]. Thesis for M.S., Nanjing Forestry University, Supervisor: Ding Y L. pp. 38-39.)
[8]董文渊, 黄宝龙, 谢泽轩, 等.2002. 筇竹生长发育规律的研究. 南京林业大学学报(自然科学版), 26(3):43-47. (Dong W Y, Huang B L, Xie Z X, et al. 2002. The Study on the Growth and Development Rhythm of Qiongzhuea tumidinoda. Journal of Nanjing Forestry University (NATURAL SCIENCE EDITION), 26(3): 43-47.)[J].南京林业大学学报(自然科学版), 2002, 26(3):43-47
[9]方楷, 杨光耀, 杨清培, 等.2011. 毛竹成竹过程中内源激素动态变化[J]. 江西农业大学学报, 33(06):1107-1111. (Fang K, Yang G Y, Yang Q P, et al. 2011. Dynamic Changes of Endogenesis Hormone in Bambooformation Course (Phyllostachys edulis)[J]. Acta Agriculturae Universitatis Jiangxiensis, 33(06):1107-1111.)[J].江西农业大学学报, 2011, 33(6):1107-1111
[10]胡超宗, 周建夷, 兰晓光等.1986. 毛竹不同笋龄营养成份的变化[J]. 竹子研究汇刊, 5(1):89-96. (Hu C Z, Zhou J Y, Lan X G, et al. 1986. Changes of nutritional components in Moso bamboo at different shoot ages[J], Journal of Bamboo Research, 5(1):89-96.)[J].竹子研究汇刊, 1986, 5(1):89-96
[11]李龙.2016. 毛竹笋生长时空变化规律和生长素相关基因分析[D]. 博士学位论文, 中国林业科学研究院, 导师:高健. pp. 81-91.(Li L. 2016. Analyses of Auxin-related Genes and Spatio-temporal Dynamic Change of Moso Bamboo Shoot[D]. Thesis for Ph.D., China Academy of Forestry Sciences, Supervisor: Gao J. pp. 81-91.)
[12]李荣, 何明霞, 刀定伟, 等.2010. 版纳甜龙竹发笋及幼竹高生长规律[J]. 基因组学与应用生物学, 29(04):735-739. (Li R, He M X, Dao W, et al. 2010. The Bamboo Shooting and Young Bamboo Growth Rhythm of Dendrocalamus hamiltonii[J]. Genomics and Applied Biology, 29(04):735-739.)[J].基因组学与应用生物学, 2010, 29(4):735-739
[13]刘波.2008. 毛竹发育过程中细胞壁形成的研究[D]. 博士学位论文, 中国林业科学研究院, 导师:姜笑梅. pp. 123-124. (Liu B. 2008. Formation of Cell Wall in Develoumental Culms of Phvllostachvs pubescens[D]. Thesis for Ph.D., China Academy of Forestry Sciences, Supervisor: Jiang M X. pp. 123-124.)
[14]刘德弟, 宣裕方, 李兰英.2005. 安吉县竹产业发展探讨[J]. 林业经济问题, 25(01):25-29. (Liu D D, Xuan Y F, Li L Y. 2005. Discussion on Bamboo Industry Development in Anji County[J]. Problems of Forestry Economics, 25(01):25-29.)[J].林业经济问题, 2005, 25(1):25-29
[15]刘耀荣.1990. 毛竹笋期的营养动态[J]. 林业科学研究, 3(4):363-367. (Liu Y R. 1990. Nutritional dynamics of Moso bamboo shoots[J]. Forest Research, 3(4):363-367.)[J].林业科学研究, 1990, 3(4):363-367
[16]楼扬, 孙祥, 江津凡.2010. 黄纹竹出笋及幼竹高生长规律研究[J]. 世界竹藤通讯, 08(4):7-10. (Lou Y, Sun X, Jiang J F. 2010. A Study of Shooting and Height Growth of Phyllostachys vivax f. huanvenzhn J. L. Lu[J]. World Bamboo and Rattan, 08(4):7-10.)[J].世界竹藤通讯, 2010, 8(4):7-10
[17]马师, 孙巧玲, 苟光前.2016. 合江方竹的生长研究[J]. 山地农业生物学报, 35(1):71-73. (Ma S, Sun Q L, Gou X Q. 2016. Study on the growth of Chimonobambusahejiangensis [Poales:Poaceae] [J]. Journal of Mountain Agriculture and Biology, 35(1):71-73.)[J].山地农业生物学报, 2016, 35(1):71-73
[18]潘孝政, 金芳义.1990 绿竹笋期生物学特性观察研究[J]. 竹子研究汇刊, 9(3):51-60. (Pan X Z, Jin F Y. 1990. Observation on the biological characteristics of bamboo shoot (Sinocalamus oldhami) period[j]. Journal of Bamboo Research, 9(3):51-60)[J].竹子研究汇刊, 1990, 9(3):51-60
[19]孙小青.2014. 雷竹笋主要有效成分分析及其活性研究[D]. 硕士学位论文, 中南林业科技大学, 导师:王平. pp. 17-18. (Sun X Q. 2014. The Main Active Ingredient Analysis and activity of Phyllostachys pracecox[D]. Thesis for Ph.D., Central South University of Forestry and Technology, Supervisor: Wang P. pp. 17-18.)
[20]唐红, 刘玮, 黄滔, 等.2015圣音竹发笋及幼竹高生长规律研究[J]. 中南林业科技大学学报, 35(8):27-31. (Tang H, Liu W, Huang T, et al. 2015. Study on shooting and young bamboo height growth of Phyllostachys heterocycla in Hunan Forest Botanical Garden[J]. Journal of Central South University of Forestry & Technology, 35(8):27-31.)[J].中南林业科技大学学报, 2015, 35(8):27-31
[21]吴炳生, 张家贤.1997. 料慈竹杆形结构的研究[J]. 南京林业大学学报(自然科学版), 21(4):59-62. (Wu B S, Zhang J S. 1997. Study on bamboo stem structure of Bambusa dislagia[J]. Journal of Nanjing Forestry University (NATURAL SCIENCE EDITION), 21(4):59-62.)[J].南京林业大学学报(自然科学版), 1997, 21(4):59-62
[22]汪奎宏, 包其富.1989.毛竹笋期激素含量及其分布规律的研究[J]. 竹子研究汇刊, 8(3):35-46. (Wang K H, Bao Q F. 1989. Study on hormone content and its distribution in shoot stage of Phyllostachys pubescens[J]. Journal of Bamboo Research, 8(3):35-46.)[J].竹子研究汇刊, 1989, 8(3):35-46
[23]王勋陵.1983. 居间分生组织与居间生长[J]. 植物杂志, (4):21-22. (Wang X L. 1983. Intercalary meristem and internodal growth[J]. The Plant Journal, (4):21-22.)[J].植物杂志, 1983, (4):21-22
[24]王逸之, 董文渊, Andrew, 等.2012. 巴山木竹笋和叶营养成分分析[J]. 林业科技开发, 26(6):47-50. (Wang Y Z, Dong W Y, Andrew, et al. 2012. An analysis of nutrient components of Bashania fargesii leaves and shoots: a staple food bamboo for giant pandas[J]. China Forestry Science and Technology, 26(6):47-50.)[J].林业科技开发, 2012, 26(6):47-50
[25]熊文愈, 丁祖福, 李又芬.1980. 竹类植物的居间分生组织与节间生长—Ⅰ秆茎的居间分生组织与节间生长[J]. 林业科学, 16(2):81-89. (Xiong W Y, Ding Z F, Li Y F. 1980. Intercalary meristem and internodal elongation of bamboo plants[J]. Scientia Silvae Sinicae, 16(2): 81-89.)[J].林业科学, 1980, 16(2):81-89
[26]徐超, 温国胜, 王海湘, 等.2016. 毛竹快速生长期的高生长与碳通量的变化规律[J]. 东北林业大学学报, 44(11):1-4. (Xu C, Wen G S, Wang H X, et al. 2016. Change Rule of Carbon Flux and Shoots High Growth of Moso Bamboo(Phyllostachys edulis) during Its Fast Growth Stage[J]. Journal of Northeast Forestry University, 44(11):1-4.)[J].东北林业大学学报, 2016, 44(11):1-4
[27]徐有明, 郝培应, 费本华.2008. 竹笋形态发育构建过程中解剖结构及化学成分的动态变化[J]. 东北林业大学学报, 36(4):8-11. (Xu Y M, Hao P Y, Fei B H. 2008. Dynamic Change of Anatomical Structure and Chemical Constitutes of Bamboo Shoots for Phyllostachys pubescence at Developmental Stage[J]. Journal of Northeast Forestry University, 36(4):8-11.)[J].东北林业大学学报, 2008, 36(4):8-11
[28]杨海芸, 王晓芹, 张宁, 等.2010. 日本花叶矢竹组织培养与叶色变异研究[J]. 竹子研究汇刊, 29(4):15-20. (Yang H Y, Wang X Q, Zhang N, et al. 2010. Tissue Culture and Leaf Color Variation of Pseudosasa japonica cv. Akebonosuji[J]. Journal of Bamboo Research, 29(4):15-20.)[J].竹子研究汇刊, 2010, 29(4):15-20
[29]杨浩, 张有珍, 何钧潮, 等.2010. 紫竹4种栽培类型出笋成竹规律研究[J]. 世界竹藤通讯, 08(6):14-17. (Yang H, Zhang Y Z, He J C, et al.2010. Shooting and Growth Rhythm of Four Cultivars of Phyllostachys nigra[J]. World Bamboo and Rattan, 08(6):14-17.)[J].世界竹藤通讯, 2010, 8(6):14-17
[30]杨奕, 董文渊, 邱月群, 等.2015. 筇竹笋生长过程中营养成分的变化[J]. 东北林业大学学报, (1):80-82. (Yang Y, Dong W Y, Qiu Y Q, et al. 2015. Transformation of Nutritional Compositions in Chimonobambusa tumidissinoda Shoots During Growth Process[J]. Journal of Northeast Forestry University, (1):80-82.)[J].东北林业大学学报, 2015, 43(1):80-82
[31]于芬.2008. 竹秆基本组织分化与功能研究[D]. 博士学位论文, 南京林业大学, 导师:丁雨龙. pp. 32-33, 84-86. (Yu F. 2008. Studies on the differention and function of ground tissue in bamboo culms[D]. Thesis for Ph.D., Nanjing Forestry University, Supervisor: Ding Y L. pp.32-33.)
[32]袁金玲, 熊登高, 胡炳堂, 等.2008. 珍稀保护竹种筇竹笋营养成分的研究[J]. 林业科学研究, 21(6):773-777. (Yuan J L, Xiong D G, Hu B T, et al. 2008. Study on Shoot Nutrition of Qiongzhuea tumidinoda: A Rare and Protected Bamboo Species[J]. Forest Research, 21(6):773-777.)[J].林业科学研究, 2008, 21(6):773-777
[33]岳祥华.2009. 铺地竹生长节律的观测[J]. 林业科技开发, 23(2):67-70. (Yue X H. 2009. Research on the Growth and Development of Arundinaria argenteostriata[J]. China Forestry Science and Technology, 23(2):67-70.)[J].林业科技开发, 2009, 23(2):67-70
[34]张春玲.2014. 毛竹笋—竹生长发育过程系统分析与生长素相关基因研究[D]. 博士学位论文, 中国林业科学研究院, 导师:高健. pp. 42-47, 63-68. (Zhang C L. 2014. The Comprehensive Analysis of Shoot-Culm and Study of Auxin-related Genes of Phyllostachvs edulis[D]. Thesis for Ph.D., China Academy of Forestry Sciences, Supervisor: Gao J. pp. 42-47, 63-68.)
[35]张培新, 周锐, 赵高军, 等.2011. 黄秆乌哺鸡竹生物学特性观测研究[J]. 世界竹藤通讯, 9(6):10-13. (Zhang P X, Zhou R, Zhao G J, rt al. 2011. Observation and Study of Biological Characteristics of Phyllostachys vivax f. aureocaulis[J]. World Bamboo and Rattan, 9(6):10-13.)[J].世界竹藤通讯, 2011, 9(6):10-13
[36]张齐生.2007. 竹类资源加工及其利用前景无限[J]. 中国林业产业, (3):22-24. (Zhang Q S. 2007. The processing and utilization prospects of bamboo resources are unlimited[J]. China Forestry Industry, (3):22-24)[J].Planta, 2007, 169(4):490-497
[37]郑进烜.2008. 海子坪天然毛竹无性系种群生长规律系统研究[D]. 硕士学位论文, 西南林学院, 导师:董文渊. pp. 15-18. (Zheng J X. 2008. Systematic study on growth rhythm of natural Phyllostachys pubescens clone population in Haiziping[D]. Thesis for M.S., Southwest Forestry University, Supervisor: Dong W Y. pp.15-18.)
[38]郑郁善, 洪伟, 邱尔发, 等.1998. 毛竹出笋期各器官激素分布特征的研究[J]. 林业科学, 34(1):100-104. (Zheng Y S, Hong W, Qiu E F, et al. 1998. Hormone content and distribution in Phyllostachys pubescens during period of shoot emergence[J]. Scientia Silvae Sinicae, 34(1):100-104.)[J].林业科学, 1998, 34(1):100-104
[39]周芳纯.1998. 竹林培育和利用[M]. 南京林业大学印刷厂, 南京. pp.74-76. (Zhou F C. 1998. Bamboo forest cultivation and utilization[M]. Nanjing Forestry University Printing House, Nanjing. pp.74-76.)
[40]Bhandawat A, Singh G, Seth R, et al.2017. Genome-Wide Transcriptional Profiling to Elucidate Key Candidates Involved in Bud Burst and Rattling Growth in a Subtropical Bamboo (Dendrocalamus hamiltonii)[J]. Frontiers in Plant Science, 7:2038.[J].Frontiers in Plant Science, 2017, 7:2038-2054
[41]Bleecker A B, Schuette J L, Kende H.1986. Anatomical analysis of growth and developmental patterns in the internode of deepwater rice[J]. Planta, 169(4):490.[J].Planta, 1986, 169(4):490-497
[42]Chae K, Isaacs C G, Reeves P H, et al.2012. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation[J]. Plant Journal for Cell & Molecular Biology, 71(4):684-697.[J].Plant Journal for Cell & Molecular Biology, 2012, 71(4):684-697
[43]Chen C Y, Hsieh M H, Yang C C, et al.2010. Analysis of the cellulose synthase genes associated with primary cell wall synthesis in Bambusa oldhamii[J]. Phytochemistry, 71(11):1270-1279.[J].Phytochemistry, 2010, 71(11):1270-1279
[44]Cho H T, Kende H.1997. Expression of expansin genes is correlated with growth in deepwater rice[J]. Plant Cell, 9(9):1661.[J].Plant Cell, 1997, 9(9):1661-1671
[45]Christian A L, Knott K K, Vance C K, et al.2015. Nutrient and mineral composition during shoot growth in seven species of Phyllostachys and Pseudosasa bamboo consumed by giant panda[J]. J Anim Physiol A Anim Nutr, 99(6):1172-1183.[J].Journal of animal physiology and animal nutrition, 2015, 99(6):1172-1183
[46]Cui K, He C Y, Zhang J G, et al.2012. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo[J]. Journal of Proteome Research, 11(11):2492-2507.[J].Journal of Proteome Research, 2012, 11(11):2492-2507
[47]Dietze M C, Sala A, Carbone M S, et al.2014. Nonstructural Carbon in Woody Plants[J]. Annual Review of Plant Biology, 65(1):667-687.[J].Annual Review of Plant Biology, 2014, 65(1):667-687
[48]Epple P, Mack A A, Morris V R, et al.2003. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 100(11):6831-6836.[J].Proceedings of the National Academy of Sciences, 2003, 100(11):6831-6836
[49]Fagard M, Desnos T, Desprez T, et al.2000. PROCUSTE1 Encodes a Cellulose Synthase Required for Normal Cell Elongation Specifically in Roots and Dark-Grown Hypocotyls of Arabidopsis[J]. The Plant cell, 12(12):2409-2424.[J].The Plant cell, 2000, 12(12):2409-2423
[50]Fujii Y, Azuma J I, Marchessault R H, et al.1993. Chemical Composition Change of Bamboo. Accompanying its Growth[J]. Holzforschung, 47(47):109-115.[J].Holzforschung, 1993, 47(2):109-115
[51]Gamuyao R, Nagai K, Ayano M, et al.2017. Hormone Distribution and Transcriptome Profiles in Bamboo Shoots Provide Insights on Bamboo Stem Emergence and Growth[J]. Plant and Cell Physiology, 58(4):702-716.[J].Plant and Cell Physiology, 2017, 58(4):702-716
[52]Gritsch C S, Murphy R J.2005. Ultrastructure of Fibre and Parenchyma Cell Walls During Early Stages of Culm Development in Dendrocalamus asper[J]. Annals of Botany, 95(4):619-629.[J].Annals of Botany, 2005, 95(4):619-629
[53]Guo H, Li L, Ye H, et al.2009. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(18):7648.[J].Proceedings of the National Academy of Sciences, 2009, 106(18):7648-7653
[54]He C, Cui K, Zhang J, et al.2013. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo[J]. BMC Plant Biology, 13(1):1-14.[J].BMC Plant Biology, 2013, 13(1):119-133
[55]He X Q, Suzuki K, Kitamura S, et al.2002. Toward understanding the different function of two types of parenchyma cells in bamboo culms[J]. Plant & Cell Physiology, 43(2):186-195.[J].Plant & Cell Physiology, 2002, 43(2):186-195
[56]He X, Wang Y, Hu Y, et al.2000. Ultrastructural study of secondary wall formation in the stem fiber of Phyllostachys pubescens[J]. Acta Botanica Sinica, 42(10):1003-1008.[J].Acta Botanica Sinica, 2000, 42(10):1003-1008
[57]Hoch G.2007. Cell Wall Hemicelluloses as Mobile Carbon Stores in Non-Reproductive Plant Tissues[J]. Functional Ecology, 21(21):823-834.[J].Functional Ecology, 2007, 21(21):823-834
[58]Jiao Y, Wang Y D, Wang J, et al.2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.[J]. Nature Genetics, 42(6):541-544.[J].Nature Genetics, 2010, 42(6):541-544
[59]Jin Q Y, Peng H Z, Lin E P, et al.2016. Identification and characterization of differentially expressed miRNAs between bamboo shoot and rhizome shoot[J]. Journal of Plant Biology, 59(4):322-335.[J].Journal of Plant Biology, 2016, 59(4):322-335
[60]Kai C, Wang H, Liao S, et al.2016. Transcriptome Sequencing and Analysis for Culm Elongation of the World[J].Plos One, 2016, 11(6):e0157362-e0157362
[61]Kant S, Rothstein S J.2009. SAUR39, a Small Auxin-Up RNA Gene, Acts as a Negative Regulator of Auxin Synthesis and Transport in Rice~(1[W]). Plant Physiology, 151(2):691-701.
[62]Li L, Cheng Z, Ma Y, et al.2017. The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth[J]. Plant Biotechnology Journal.[J].Plant Biotechnology Journal, 2017, :-
[63]Liese W, Grosser D.1972. Untersuchungen zur Variabilit?t der Faserl?nge bei Bambus[J]. Holzforschung - International Journal of the Biology, Chemistry, Physics and Technology of Wood, 26(6):202-211.[J].Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1972, 26(6):202-211
[64]Murphy R J, Alvin K L.1997. Fibre Maturation in the Bamboo gigantochloa scortechinii[J]. IAWA Journal, 18(2):147-156.[J].IAWA Journal, 1997, 18(2):147-156
[65]Nakamura A, Higuchi K, Goda H, et al.2003. Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling[J]. Plant physiology, 133(4): 1843-1853.[J].Plant physiology, 2003, 133(4):1843-1853
[66]Nieminen K, Immanen J, Laxell M, et al.2008. Cytokinin signaling regulates cambial development in poplar[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(50):20032.[J].Proceedings of the National Academy of Sciences, 2008, 105(50):20032-20037
[67]Nirmala C, David E, Sharma M L.2007. Changes in nutrient components during ageing of emerging juvenile bamboo shoots[J]. International Journal of Food Sciences & Nutrition, 58(8):612-618.[J].International Journal of Food Sciences & Nutrition, 2007, 58(8):612-618
[68]Parameswaran N, Liese W.1975. On the polylamellate structure of parenchyma wall in Phyllostachys edulis Riv[J]. Int. Ass. Wood Anat. Bull, 4:57-58. Parameswaran N, Liese W. 1976. On the fine structure of bamboo fibres[J]. Wood Science and Technology, 10(4):231-246.[J].Wood Science and Technology, 1976, 10(4):231-246
[69]Parameswaran N, Liese W.1980. Ultrastructural aspects of bamboo cells[J]. Cellulose Chemistry & Technology, 14:587-609.[J].Cellulose Chemistry & Technology, 1980, 14:587-609
[70]Peng Z, Zhang C, Zhang Y, et al.2013. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis)[J]. Plos One, 8(11): e78944.[J].Plos One, 2013, 8(11):e78944-e78944
[71]Persson S, Paredez A, Carroll A, et al.2007. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(39):15566-71.[J].Proceedings of the National Academy of Sciences, 2007, 104(39):15566-15571
[72]Song X, Peng C, Zhou G, et al.2016. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla)[J]. Scientific Reports, 6:25908.[J].Scientific Reports, 2016, 6:25908-25908
[73]Swarup K, Benková E, Swarup R, et al.2008. The auxin influx carrier LAX3 promotes lateral root emergence[J]. Nature Cell Biology, 10(8):946.[J].Nature Cell Biology, 2008, 10(8):946-954
[74]Taniguchi E.1956. Chemical studies on the crystalline region of cellulose materials. XIV. Variation of fine structure in Akamatsu (Pinus densiflora Sieb. et Zucc.) and Mosochiku (Phyllostachys edulis Riv.) through growth[J]. Mokuzai Gakkaishi, 2:152-157.[J].Mokuzai Gakkaishi, 1956, 2:152-157
[75]Tatematsu K, Kumagai S, Muto H, et al.2004. MASSUGU2 Encodes Aux/IAA19, an Auxin-Regulated Protein That Functions Together with the Transcriptional Activator NPH4/ARF7 to Regulate Differential Growth Responses of Hypocotyl and Formation of Lateral Roots in Arabidopsis thaliana[J]. Plant Cell, 16(2):379-393.[J].Plant Cell, 2004, 16(2):379-393
[76]Taylor N G, Scheible W R, Cutler S, et al.1999. The irregular xylem3 Locus of Arabidopsis Encodes a Cellulose Synthase Required for Secondary Cell Wall Synthesis[J]. Plant Cell, 11(5):769.[J].Plant Cell, 1999, 11(5):769-779
[77]Takenouchi Y.1931. über die Missbildung von Bambus-Arten[J]. Journal of the Japanese Forestry Society, 13(12):898-903.[J].Journal of the Japanese Forestry Society, 1931, 13(12):898-903
[78]Taylor N G, Laurie S, Turner S R.2000. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis[J]. Plant Cell, 12(12):2529.[J].Plant Cell, 2000, 12(12):2529-2539
[79]Taylor N G, Howells R M, Huttly A K, et al.2003. Interactions among three distinct CesA proteins essential for cellulose synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 100(3):1450-5.[J].Proceedings of the National Academy of Sciences, 2003, 100(3):1450-1455
[80]Teale W D, Paponov I A, Palme K.2006. Auxin in action: signalling, transport and the control of plant growth and development[J]. Nature Reviews Molecular Cell Biology, 7(11):847-59.[J].Nature Reviews Molecular Cell Biology, 2006, 7(11):847-859
[81]Toba K, Nakai T, Shirai T, et al.2015. Changes in the cellulose crystallinity of moso bamboo cell walls during the growth process by X-ray diffraction techniques[J]. Journal of Wood Science, 61(5):1-8.[J].Journal of Wood Science, 2015, 61(5):517-524
[82]Wan-Jung Chang, Mao-Ju Chang, Shang-Tzen Chang, et al.2013. Chemical Composition and Immunohistological Variations of a Growing Bamboo Shoot[J]. Journal of Wood Chemistry and Technology, 33(2):144-155.[J].Journal of Wood Chemistry and Technology, 2013, 33(2):144-155
[83]Wang H Y, Cui K, He C Y, et al.2015. Endogenous hormonal equilibrium linked to bamboo culm development[J]. Genetics & Molecular Research Gmr, 14(3):11312-23.[J].Genetics & Molecular Research GMR, 2015, 14(3):11312-11323
[84]Wang K, Peng H, Lin E, et al.2010. Identification of genes related to the development of bamboo rhizome bud[J]. Journal of Experimental Botany, 61(61):551-561.[J].Journal of Experimental Botany, 2010, 61(61):551-561
[85]Xie Q, Guo H S, Dallman G, et al.2002. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature, 419(6903):167.[J].Nature, 2002, 419(6903):167-170
[86]Yeh S H, Lin C S, Wu F H, et al.2011. Analysis of the expression of BohLOL1, which encodes an LSD1-like zinc finger protein in Bambusa oldhamii[J]. Planta, 234(6):1179-1189.[J].Planta, 2011, 234(6):1179-1189
[87]Zhao H, Chen D, Peng Z, et al.2013. Identification and characterization of microRNAs in the leaf of ma bamboo (Dendrocalamus latiflorus) by deep sequencing[J]. Plos One, 8(10):e78755.[J].Plos One, 2013, 8(10):e78755-e78755
[88]Zhou H L, He S J, Cao Y R, et al.2006. OsGLU1, A Putative Membrane-bound Endo-1, 4-?-D-glucanase from Rice, Affects Plant Internode Elongation[J]. Plant Molecular Biology, 60(1):137-151.[J].Plant Molecular Biology, 2006, 60(1):137-151
[89]Zhou M B, Yang P, Gao P J, et al.2011. Identification of Differentially Expressed Sequence Tags in Rapidly Elongating Phyllostachys pubescens, Internodes by Suppressive Subtractive Hybridization[J]. Plant Molecular Biology Reporter, 29(1):224-231.[J].Plant Molecular Biology Reporter, 2011, 29(1):224-231
[90]Zhou M B, Zheng Y, Liu Z G, et al.2016. Endo-1, 4-β-glucanase, gene involved into the rapid elongation of Phyllostachys heterocycla, var. pubescens[J]. Trees, 30(4):1259-1274.[J].Trees, 2016, 30(4):1259-1274
|
|
|
|