|
|
Cloning and CAPS Marker Development of Seed Weight-Related Gene TaCYP78A16 in Wheat (Triticum aestivum) |
|
|
Abstract Grain weight is an important factor determing the yield of wheat (Triticum aestivum) production, and is one of the main objectives in high-yield wheat breeding. In order to develop molecular markers of potential grain weight related genes in wheat, the TaCYP78A16 (Triticum aestivum cytochrome P450 78A 16, GenBank No.: MH572527) gene was isolated from the whole wheat genome, then polymorphism analysis was implemented in its genome sequence. The results showed that high expression of TaCYP78A16 was detected in young panicles immature seeds by real time PCR analysis expression pattern of TaCYP78A16 and it indicated that TaCYP78A16 might play an important role in grain development and have an impact on grain weight. Polymorphism analysis showed that there were 7 polymorphic loci in 16Ap, which formed 3 haplotypes (16Ap-Hap1, 16Ap-Hap2 and 16Ap-Hap3). A CAPS (cleaved amplified polymorphic sequences) marker, 16Ap-Hap, was developed based on SNP to distinguish the promoter of TaCYP78A16-A alleles. A total of 3 genotypes were detected among the 30 wheat accessions and the 323 nature populations based on the CAPS marker. The functional marker, CAPS-16Ap, can be used in marker-assisted selection breeding in wheat.
|
Received: 17 April 2018
Published: 26 September 2018
|
|
|
|
郭利建, 王竹林, 汪世娟, 等. 2017. 基于SRAP和SSR标记的小麦粒长和千粒质量QTL定位及效应分析[J]. 西北农业学报, 26(8):1165-1172. ( GUO L J, WANG Z L, WANG S J, et al. 2017, The QTL mapping and effect ananlysis of wheat kernel length and 1000-grain mass bases on SRAP and SSR markers[J], Acta Agriculture Boreali-occidentalis Sinica, 26(8):1165-1175.)黄杰, 谭琦, 鲍大鹏. 2015. 运用SNP-CAPS分子标记定位香菇重要功能基因的研究[J]. 上海农业学报, 31(2):13-17. ( HUANG J, TAN Q, BAO D P, 2015. Location of important functional genes lentinula edodes by using the SNP-CAPS molecular markers[J]. Acta Agriculture Shanghai, 31(2):13-17.)李学军, 李立群, 王辉, 等. 2008. GW3-1和IND109标记对普通小麦粒重的QTL定位分析(英文) [J]. 西北植物学报, 28(6):1106-1111. ( LI X J , LI L Q, WANG H, et al. 2008. QTL mapping for kernel weight using GW3-1 and IND109 markers in common wheat ( Triticum aestivum L .) [J]. Acta Agriculture Boreali-occidentalis Sinica, 28(6): 1106-1111.)孙妍妍, 曲高平, 黄谦心, 等. 2015. 甘蓝型油菜抗苯磺隆突变体ALS基因分析与SNP标记[J]. 中国油料作物学报, 37(5):589-595. ( SUN Y Y,QU G P,HUANG Q X, et al. 2015. SNP markers for acetolactate synthase genes from tribenuron-methyl resistant mutants in Brassica napus L. [J], Chinese Journal of Oil Crop Sciences, 37(5): 589-595.)邢延豪, 周延清, 楚素霞, 等. 2011. CAPS标记技术及其应用进展[J]. 江苏农业科学, 39(5):74-76. ( XING Y H, ZHOU Y Q, CHU S X, et al. 2011. CAPS marking technology and its application progress[J]. Jiangsu Agriculture Science, 39(5): 74-76.)闫庆祥, 黄东益, 李开绵, 等. 2010. 利用改良CTAB法提取木薯基因组DNA[J]. 中国农学通报, 26(4):30-32. ( YAN Q X, HUANG D Y, LI K M, et al. 2010. Genomic DNA extraction in cassava by modified CTAB method[J], Chinese Agricultural Science Bulletin, 26(4): 30-32.)杨广阔, 陈子强, 陈在杰, 等. 2014. 基于二代测序数据开发以93-11为亲本的水稻SNP-dCAPS标记的研究实例[J]. 分子植物育种, 12(6):1288-1295. ( YANG G K, CHEN Z Q, CHEN Z J, et al. 2014. Developing rice SNP-dCAPS markers based on next generation resequencing data of 93-11 as parental line, a case study, Molecular Plant Breeding, 12(6): 1288-1295.)周慧文, 卢丙洋, 马鸿艳, 等. 2016. 西瓜种子大小形状相关QTL分析[J]. 园艺学报, 43(4):715-723. ( ZHOU H W, LU B Y, MA H Y, et al. 2016. QTL mapping of watermelon seed traits. Acta Horticulturae Sinica, 43 (4): 715–723.)周雷, 蔡海亚, 戴凤美, 等. 2016. 水稻稻瘟病抗性基因Pi25功能性SNP分子标记开发及应用[J]. 分子植物育种, 14(10):2680-2685. ( ZHOU L, CAI H Y, DAI F M, et al. 2016. Development and application of a functional SNP marker of the blast resistant gene Pi25 in Rice. Molecular Plant Breeding, 14(10): 2680-2685.)Adamski N M, Anastasiou E, Eriksson S, et al. 2009. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(47): 20115-20120.Andersen J R, Lubberstedt T, 2003. Functional markers in plants [Review][J]. Trends in Plant Science, 8(11): 554-560.Bednarek J, Boulaflous A, Girousse C, et al. 2012. Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat[J]. Journal of Experimental Botany, 63(16): 5945-5955.Brown T A, Jones M K, Powell W, et al. 2009. The complex origins of domesticated crops in the Fertile Crescent[J]. Trends in Ecology & Evolution, 24(2): 103-109.Chang C, Lu J, Zhang H P, et al. 2015. Copy number variation of cytokinin oxidase gene Tackx4 associated with grain weight and chlorophyll content of flag leaf in common wheat[J]. PLoS One, 10(12): e0145970.Chang J, Zhang J, Mao X, et al. 2013. Polymorphism of TaSAP1-A1 and its association with agronomic traits in wheat[J]. Planta, 237(6): 1495-1508.Du D, Gao X, Geng J, et al. 2016. Identification of key proteins and networks related to grain development in wheat (Triticum aestivum L.) by comparative transcription and proteomic analysis of allelic variants in TaGW2-6A[J]. Frontiers in Plant Science, 7(922).Feldmann K A, 2001. Cytochrome P450s as genes for crop improvement[J]. Current Opinion in Plant Biology, 4(2): 162-167.Fuller D Q, 2007. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world[J]. Annals of Botany, 100(5): 903-924.Hong Y T, Chen L F, Du L P, et al. 2014. Transcript suppression of TaGW2 increased grain width and weight in bread wheat[J]. Functional & Integrative Genomics, 14(2): 341-349.Lu Y, Xu J, Yuan Z, et al. 2012. Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize[J]. Molecular Breeding, 30(1): 407-418.Ma D Y, Yan J, He Z H, et al. 2012. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers[J]. Molecular Breeding, 29(1): 43-52.Ma M, Wang Q, Li Z J, et al. 2015. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size[J]. Plant Journal, 83(2): 312-325.Ma M, Zhao H X, Li Z J, et al. 2016. TaCYP78A5 regulates seed size in wheat (Triticum aestivum L.)[J]. Journal of Experimental Botany, 67(5): 1397-1410.Matsuoka Y. 2011. Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification[J]. Plant and Cell Physiology, 52(5): 750-764.Nagasawa N, Hibara K I, Heppard E P, et al. 2013. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice[J]. Plant Journal, 75(4): 592-605.Nelson D R, Schuler M A, Paquette S M, et al. 2004. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot[J]. Plant Physiology, 135(2): 756-772.Padmabhan C, Zheng Y, Shekaste-Band R, et al. 2016. Transcriptome profiling to discover defense-related genes associated with resistance line ty-5 against Tomato yellow leaf curl virus in tomato[J]. Phytopathology, 106(12): 161-161.Qi X L, Liu C L, Song L L, et al. 2017. PaCYP78A9, a cytochrome P450, regulates fruit size in sweet cherry (Prunus avium L.)[J]. Frontiers in Plant Science, 8.Sattarzadeh, A, Achenbach U, Lubeck J, et al. 2006. Single nucleotide polymorphism (SNP) genotyping as basis for developing a PCR-based marker highly diagnostic for potato varieties with high resistance to globodera pallida pathotype Pa2/3[J]. Molecular Breeding, 18(4): 301-312.Sikandar A, S L, Peng G, et al. 2018. QTL mapping for melon (Cucumis melo L.) fruit traits by assembling and utilization of novel SNPs based CAPS markers[J]. Scientia Horticulturae, 23618-29.Simmonds J, Scott P, Brinton J, et al. 2016. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains[J]. Theoretical & Applied Genetics, 129(6): 1099-1112.Simmonds J, Scott P, Leverington-Waite M, et al. 2014. Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L .)[J]. Bmc Plant Biology, 14(1): 191.Song X J, Huang W, Shi M, et al. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 39(5): 623-630.Su J Y, Tong Y P, Liu Q Y, et al. 2006. Mapping quantitative trait loci for post-anthesis dry matter accumulation in wheat[J]. Journal of Integrative Plant Biology, 48(8): 938-944.Su Z Q, Hao C Y, Wang L F, et al. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 122(1): 211-223.Wang J W, Schwab R, Czech B, et al. 2008. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana[J]. Plant Cell, 20(5): 1231-1243.Williams K, Sorrells M E, 2014. Three-dimensional seed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations[J]. Crop Science, 54(1): 98-110.Xu F, Fang J, Ou S J, et al. 2015. Variations in CYP78A13 coding region influence grain size and yield in rice[J]. Plant Cell and Environment, 38(4): 800-811.Yang Z B, Bai Z, Li X, et al. 2012a. SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight[J]. Tagtheoretical & Applied Geneticstheoretische Und Angewandte Genetik, 125(5): 1057-1068.Yang Z B, Bai Z Y, Li X L, et al. 2012b. SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight[J]. Theoretical and Applied Genetics, 125(5): 1057-1068.Zanke C D, Ling J, Plieske J, et al. 2014. Genetic architecture of main effect QTL for heading date in European winter wheat[J]. Frontiers in Plant Science, 5.Zanke C D, Ling J, Plieske J, et al. 2015. Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping[J]. Frontiers in Plant Science, 6.Hu Z J, Lu S J, Wang M J, et al. 2018. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. MOLECULAR PLANT.Zhai H, Feng Z, Du X, et al. 2017. A novel allele of TaGW2 - A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat ( Triticum aestivum L.)[J]. Theoretical & Applied Genetics, (1): 1-15.Zhang B, Xu W N, Liu X, et al. 2017. Functional Conservation and Divergence among Homoeologs of TaSPL20 and TaSPL21, Two SBP-Box Genes Governing Yield-Related Traits in Hexaploid Wheat[J]. Plant Physiology, 174(2): 1177-1191.Zhang Y J, Liu J D, Xia X C, et al. 2014. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat[J]. Molecular Breeding, 34(3): 1097-1107. |
|
|
|