|
|
Core Germplasm Construction of Cornus officinalis by ISSR Markers |
|
|
Abstract Germplasm resources are foundation for superior cultivar breeding, and essential for improve the economic efficiency for Cornus officinalis, a special herb tree species in China. The current study select C. officinalis core collection in the samples from all over the country by inter-simple sequence repeat (ISSR) markers, for the collection, evaluation, preservation and usage of germplasm. One hundred and twenty nine samples were collected from 11 provinces all over China. Total DNA were extracted by modified cetrimonium trimethyl ammonium bromide (CTAB) method and amplified by 11 ISSR markers. To select the core construction, cluster sampling adopts 2 strategies: Random sampling and site sampling, while genetic distances were estimated in 3 ways: Similar matching (SM) genetic similarity coefficient, Jaccard genetic similarity coefficient or Nei & Li genetic similarity coefficient. T test was carried out on the genetic parameters of the original collection, core collection and germplasm collection, to evaluate the representative and heterogeneity. The heterogeneity of the original germplasm and core collection was tested to confirm the representative of the core collection. Eleven primers amplified 87 bands from 129 samples, all of which were polymorphic, and the average loci number of each primer was 7.91. For the whole 129 samples, the number of alleles (Na) was 2.000 0, the average effective number of alleles (Ne) was 1.438 8, average Nei's genetic diversity index (H) was 0.259 3, the average Shannon's information index (I) was 0.400 6. These parameters showed the samples had high genetic diversity at the DNA level. Cluster analysis showed that geographical isolation and genetic differentiation existed in the populations from different areas. Cluster sampling results under 2 sampling strategies and 3 types of genetic distance were compared, the S1D3 group selected 34 samples by site preferred sampling strategy and Nei & Li genetic distance clustering showed the highest genetic diversity parameters. The number of effective alleles, Nei 's genetic diversity index and Shannon information index of the S1D3 group were significantly higher than the initial collection in the 0.01 level of probability, and the genetic diversity was more abundant than the reserve germplasm. Thirteen phenotypic indicators of the original germplasm and the core collection were compared, except for leaf width, petiole length and dried fruit weight differed at the 0.05 level, other 10 traits had no significant difference with the original germplasm. The phenotypic indicators of the selected core germplasm could represent the original germplasm resources. A C. officinalis core collection including 34 samples were selected from 129 germplasms collected from 11 provinces all over China, contained 26.36% of the original germplasm. By comparing the genetic diversity parameters of the core collection,original germplasm and the reserve germplasm, along with the confirmation by 13 phenotypic traits data, the core collection can represent the genetic diversity of the original germplasm. The result can be used in C. officinalis germplasm resource conservation and superior cultivar breeding.
|
Received: 09 October 2016
Published: 31 March 2017
|
|
|
|
|
白成科,俞君如,于凤,等.2009.山茱萸种质资源的ISSR遗传多样性分析与初级核心种质库的构建[J].西北植物学报,29(12):2401-2407.(Bai C K,Yu J R,Yu F, et al. 2007. Genetic Diversity and Construction of Primary Core Germplasm in Cornus officinalis by ISSR Marker[J]. Acta Botanica Boreali-Occidentalia Sinica.29(12):2401-2407.)陈延惠,冯建灿,郑先波,等. 2012. 山茱萸研究现状与展望[J]. 经济林研究, 30(1):143-150.(Chen Y H,Feng J C,Zheng X B,et al. 2012. Development and prospects of researches on Cornus officinalis[J]. Nonwood Forest Research,30(1):143-150.)邓少春,田易萍,李友勇,等.2015. 茶树资源核心种质研究进展[J].中国农学通报,31(16):121-126. (Deng S C,Tian Y P,Li Y Y, et al.2015. Research Progress of Core Germplasm of Tea Tree Resources[J]. Chinese Agricultural Science Bulletin, 31(16):121-126.)董博文,李继东,郑先波,等.2014a. 山茱萸种质资源表型性状多样性及相关性分析[J].经济林研究,32(2):163-166.( Dong B W, Li J D, Zheng X B, et al.2014a. Diversity and correlation analysis of phenotypic characteristics in Cornus offi- cinalis germplasm resources[J]. Nonwood Forest Research, 32(2):163-166)董博文,管少花,董卉卉,等.2014b. 山茱萸叶片DNA提取方法及ISSR反应体系构建[J].河南林业科技,34(1):1-4.( Dong B W, Guan S H, Dong H H, et al. 2014b. A Method for Extracting DNA from Mature Leaves of Cornus officinalis and ISSR Reacting System Construction[J]. Journal of Henan Forestry Science and Technology, 34(1):1-4.)方文培,胡文光. 1990.中国植物志(第56卷)[M].北京: 科学出版社,83-85.( Fang W P, Hu W G. 1990. Flora of China(Vol. 56) [M].Beijing: Science Press, 83-85.)郝晨阳,董玉琛,王兰芬,等.2008.我国普通小麦核心种质的构建及遗传多样性分析[J].科学通报,53(8):908—915.( Hao C Y,Dong Y C,Wang L F,et al.2008. Core collection construct and genetic diversity analysis on Chinese wheat(Triticum aestivum)[J].Science Bulletin,53(8):908—915.)胡标林,万勇,李霞,等.2012.水稻核心种质表型性状遗传多样性分析及综合评价[J].作物学报,38(5):829—839.( Hu Biaolin,Wan Yong,Li X,et al.2012.Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and its comprehensive assessment[J]. ACTA Agronomica Sinica,38(5):829—839.)李秀兰,贾继文,王军辉,等.2013. 灰楸形态多样性分析及核心种质初步构建[J].植物遗传资源学报,14(2):243-248.( Li X L, Jia J W, Wang J H, et al. 2013.The Morphological Diversity Analysis and Preliminary Construction of Core Collection of Catalpa fargesii Bureau[J]. Journal of Plant Genetic Resources, 14(2):243-248.)李自超,张洪亮,孙传清,等.1999. 植物遗传资源核心种质研究现状与展望[J].中国农业大学学报,4(5):51-62.( Li Z C, Zhang H L, Sun C Q, et al. 1999. Status and Prospects of Core Collectionin Plant Germplasm Resource[J]. Journal of China Agricultural University, 4(5): 51-62.)刘娟,廖康,赵世荣,等.2015. 利用ISSR分子标记构建新疆野杏核心种质资源[J].中国农业科学,48(10):2017-2028. (Liu J, Liao K, Zhao S R, et al. 2015.The Core Collection Construction of Xinjiang Wild Apricot Based on ISSR Molecular Markers[J]. Scientia Agricultura Sinica, 48(10):2017-2028.)马玉敏.2009. 中国野生板栗( Castanea mollissim Blume )群体遗传结构与核心种质构建方法.山东泰安: 山东农业大学[D]. (Ma Y M. 2009. Population Genetic Structure and Method of ConstruetIng Core Collection for Castanea mollissim Blume[D]. Shandong Taian: MS thesis of Shandong Agricultural University.)倪茂磊.2011.美洲黑杨遗传多样性分析与核心种质库构建[D].南京:南京林业大学. (Ni M L. 2011. Analysis of genetic diversity and construction of primary core Collection of PoPulus dehoids[D]. Nanjing: MS thesis of Nanjing Forestry University.)王建成,胡晋,黄歆贤,等.2008. 植物核心种质构建数据和代表性评价参数的研究进展[J].种子,27(8):52-55. (Wang J C, Hu J, Huang Y X, et al. 2008. Progress in Construc Data and Evaluating Parameters of Representativeness for Plant Core Collection[J]. Seed, 27(8):52-55.)王萱,刘晓静,邢世岩,等.2016. 中国部分古银杏资源遗传多样性的AFLP分析及核心种质的构建[J].园艺学报,43(2):249-260. (Wang X, Liu X J, Xing S Y, et al. 2016. AFLP Analysis of Genetic Diversity and a Construction of the Core Collection of Partial Ancient Ginkgo biloba in China[J]. Acta Horticulturae Sinica, 43(2):249-260.)王永康,吴国良,李登科,等.2010.果树核心种质研究进展[J].植物遗传资源学报,11(3):380—385. (Wang Y K,Wu G L,Li D K,et al. 2010.Advances in core collection of fruit germplasm[J]. Journal of Plant Genetic Resources,11(3):380—385.)魏志刚,高玉池,刘桂丰,等.2009. 白桦核心种质初步构建[J].林业科学,45(10):74-80. ( Wei Z G, Gao Y C, Liu G F, et al. 2009. Preliminary Construction of Core Collection of Betula platyphylla Germplasm[J]. Scientia Silvae Sinicae, 45(10):74-80.)于靖.2015. 杜仲种质资源及其果实质量评价[D].陕西:西北农林科技大学. (Yu J. 2015. Germplasm resource of Eucommta Ulmoides oliver and fruits quality evaluation[D]. Shaanxi: MS thesis of North West Agriculture and Forestry University.)袁海涛,董玉芝,王肇延.2012. 用最小距离逐步取样法构建野核桃核心种质[J].浙江农业科学,(7):972-974. (Yuan H T, Dong Y Z, Wang Z Y, et al. 2012. Construction of wild Juglans regia core collection with minimum distance stepwise sampling method[J]. Journal of Zhejiang Agricultural Sciences, (7): 972-974.)曾宪君,李丹,胡彦鹏,等.2014. 欧洲黑杨优质核心种质库的初步构建[J].林业科学,50(9):51-58. (Zeng X J, Li D, Hu Y P, et al. 2014. A Preliminary Study on Construction of High-Quality Core Collection of Populus nigra[J]. Scientia Silvae Sinicae, 50(9): 51-58.)张春雨.2008. 新疆野苹果( Malus sieversii )群体遗传结构与核心种质构建方法[D].山东:山东农业大学. (Zhang C Y. 2008. Population Genetic Structure and Method of Constructing Core Collection for Malus sieversii[D]. Shandong: MS thesis of Shandong Agricultural University.)张龙进.2012. 山茱萸种质资源遗传多样性分析及核心种质构建方法研究[D].西安:陕西师范大学. (Zhang L J. 2012. Genetic Diversity Analysis and Construction Method of Core Collecstion of Dogwood[D]. Xian: MS thesis of Shaanxi Normal University.)Frankel O H.1984. Genetic Perspectives of Germplasm Conservation. In: Arber W, Illmensee K, Peacock W J, Starlinger P (eds) [M]. Genetic Manipulation: Impact on Man and Society. Cambridge: Cambridge University Press, 161-170.Hu J, Zhu J, Xu H M. . 2000. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops[J]. Theoretical and Applied Genetics, 101: 264-268.Jansen J, Hintum T. 2007. Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce[J]. Theoretical and Applied Genetics, 114: 421-428.Rohlf F.J.. 2002. NTSYS-pc: numerical taxonomy system ver.2.1[M]. Exeter Publishing Ltd, Setauket, New York.Yeh F.C., Yang R., Boyle T.J., Ye, Z. Xiyan J.M..2000. PopGene32, Microsoft windows-based freeware for population genetic analysis, version 1.32[M]. Molecular Biology and Biotechnology Centre, University of Alberta , Edmonton, Alberta, Canada. |
|
|
|