Contact Us Add to Favorite
 
NianQi Search Adv Search
33
  2016, Vol. 24 Issue (7): 1028-1038    DOI:
Articles and Letters Current Issue | Archive | Adv Search |
Cloning and Function Analysis of BG Genes in Strawberry (Fragaria × ananassa) Fruit
, ,
Download: PDF (10326 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Abscisic acid (ABA) can promote the strawberry (Fragaria × ananassa) fruit development and ripening, and inactive ABA glucose ester (ABA-GE) can be converted into free ABA by β-glucosidases (BG), therefore, BG is involved in the fruit development process. But there is no genetic evidence to reveal the mechanism of BG involved in fruit development. To understand the function of BG in the strawberry developmental stages, in this study, Sweet Charlie strawberry was used as test materials, and three genes encoding BG that were FaBG1, FaBG2 and FaBG3 were isolated through molecular cloning of PCR. Firstly, bioinformatics and temporal expression analysis of FaBGs were performed during strawberry fruit development stages, and the ABA contents were also measured. Secondly, molecular regulation of FaBG3 gene expression levels affected fruit endogenous BG activity, and fruit phenotypic changes, physiological indexes such as ABA content, pigments content, soluble solids content, and the fruit hardness were analyzed. In addition, ABA signal pathway, the pigment metabolism and cell wall metabolism related gene expression levels were analyzed. The results showed that BG protein in strawberry contained a region of BglB region, which was a specific region could hydrolyze other complexes. Three genes encoding the BG protein in strawberry were found, and had different expression levels. During the ripening of strawberry fruits, ABA content increased gradually, the expression level of FaBG1 gene was very low, in general the expression amount of FaBG2 gene was decreased, and only FaBG3 gene expression level was consistent with the ABA content and fruit development. Therefore, FaBG3 played a more important role in the regulation of ABA content. Using a technique of RNA interference to reduce the gene expression level of FaBG3 in strawberry fruit also downregulated FaBG1 and FaBG2 genes expression level, suggesting that ABA content was downregulated by FaBG3-interfere, and FaBG1 and FaBG2 expression were also influenced. FaBG3 gene expression levels down-regulation led to the reduction of fruit endogenous beta-glucosidases activity, which influenced the ABA accumulation. Meantime, ABA content changes also affected the physiological changes in strawberry fruit, such as pigment and soluble solid content were reduced, and the fruit hardness were up-regulated, which finally influenced the fruit ripening process. On the contrary, FaBG3 overexpression promoted the strawberry fruit ripening process. In FaBG3-RNAi fruit, the genes expression levels that related to pigment metabolism, such as chalcone synthase (CHS), chalcone isomerase (CHI), flavonoid-3-hydroxy-lase (F3H), UDP Glc-flavonoid 3-O-glucosyl transferase (UFGT) and dihydroflavo-nol-4-reductase (DFR) genes, fruit softening, such as pectin methylesterase (PE), expansin (EXP), polygalacturonase (PG) and pectate lyases (PL) genes, fruit aroma metabolism, such as quinone oxidoreductase (QR) and alcohol acyltransferase (AT), and ABA signal pathway, such as pyrabatin resistance (PYR), ABA insensitive 1 (ABI1), ABI3, ABI4 and ABI5 genes were also down-regulated, however, a negative factor of ABI1 which involved in ABA signaling pathway was up-regulated. Due to the expression levels changes of these key genes related to fruit development and ripening, at last, the fruit development process were delayed. The fruit physiological and molecular index changes could reveal the mechanism of BG in regulation of strawberry fruit development.
Key wordsStrawberry      Fruit      β-glucosidases      Abscisic acid      Gene interfere     
Received: 10 December 2015      Published: 20 May 2016
ZTFLH:  S663.9  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
GUO Zheng-Bing
HAN Bai-Meng
SUO Heng-Zhi
Cite this article:   
GUO Zheng-Bing,HAN Bai-Meng,SUO Heng-Zhi. Cloning and Function Analysis of BG Genes in Strawberry (Fragaria × ananassa) Fruit[J]. , 2016, 24(7): 1028-1038.
URL:  
http://journal05.magtech.org.cn/Jwk_ny/EN/     OR     http://journal05.magtech.org.cn/Jwk_ny/EN/Y2016/V24/I7/1028
Copyright © Editorial Board of 农业生物技术学报
Supported by:Beijing Magtech