|
|
Fusion Expression of Peptide Sequences Bound to Midgut Receptors of Empoasca vitis and the Interaction with Brash Border Membrane Vesicle (BBMV) |
|
|
Abstract Empoasca vitis (Gothe), one of the most serious tea plant (Camellia sinensis) insects, occurs throughout the Chinese tea growing areas and causes significant losses in both production and quality of tea. It is of important significance to solve pest problems by biological pesticide and initially explore the intoxication mechanisms of Bacillus thuringiensis Cry toxins to E. vitis midgut cells. Using specific primers, peptide sequence bound to midgut receptors by screening phage library was amplified. The 750 bp PCR product was purified and cloned into the cloning vector pMD-18T, then the recombinant plamid DNA was used for EcoRⅠ/XhoⅠdigested identification and gene sequencing. The targeted fragment was subcloned into expression vector, and then the strain with recombinant plasmid of pT-egfp-32a was induced and expressed. Moreover, the fusion protein was purified by His affinity chromatography and its binding activity to E. vitis midgut was verified by Western blot. Results indicated that the relative molecular weight of T-EGFP was about 46 kD in supernatant after purification step. After that, it also achieved good effect that Western blot had been identified its binding activity to E. vitis midgut brash border membrane vesicle (BBMV). Successful projects for expression, purification and verification of T-EGFP bound to midgut receptors of E. vitis would provide basic data for further research on understanding the interaction mechanism between Cry toxins and E. vitis midgut cells, and also contribute to further study of directed modification for Bt Cry toxin against E. vitis.
|
Received: 29 June 2015
Published: 05 October 2015
|
|
|
|
黄天培, 潘洁茹, 黄张敏, 等. 2008. 苏云金芽胞杆菌WB9菌株cry2Ac4基因的克隆及表达[J]. 农业生物技术学报, 16(2): 341-345. (Huang T P, Pan J R, Huang Z M, et al. 2008. Cloning and Expression of cry2Ac4 Gene from Bacillus thuringiensis WB9[J]. Journal of Agricultural Biotechnology, 16(2): 341-345. ) doi: 10.3969/j.issn.1674-7968.2008.02.029邵恩斯, 林莉, 石鹏, 等. 2014. 苏云金芽胞杆菌Cry1Ab毒素domain Ⅱ内3个loop对其毒性作用的影响[J]. 农业生物技术学报, 22(11): 1357-1366. (Shao E S, Lin L, Shi P, et al. 2014. Impact of Three Exposed Loops in Domain Ⅱ of Cry1Ab Toxin of Bacillus thringiensis on Its Insecticidal Activity[J]. Journal of Agricultural Biotechnology, 22(11): 1357-1366. ) doi: 10.3969/j.issn.1674-7968.2014.11.005唐颢, 唐劲驰, 黎健龙, 等. 2012. 茶树不同轻修剪模式对假眼小绿叶蝉种群及茶叶产量、品质的影响[J]. 广东农业科学, 14: 89-97. (Tang H, Tang J H, Li J L, et al. 2012. Influence of different light pruning mode of tea trees on smaller green leafhopper’s population and tea yields & quality[J]. Guangdong Agricultural Sciences, 39(14): 89-97. ) doi: 10.3969/j.issn.1004-874X.2012.14.029王庆森, 王定峰, 吴光远. 2013. 我国茶树假眼小绿叶蝉研究进展[J]. 福建农业学报,28(6): 615-623. (Wang Q S, Wang D F, Wu G Y. 2013. Research Advances on Empoasca vitis (Gothe) in Tea Trees in China[J]. Fujian Journal of Agriculture Sciences, 28(6): 615-623. ) doi: 10.3969/j.issn.1008-0384.2013.06.022魏琪, 高聪芬. 2014. 我国茶树假眼小绿叶蝉的发生与防治研究进展[J].茶叶科学技术, (1): 7-11. (Wei Q, Gao C F. 2014. Advance in Research Occurrence Regularity and Controlling of the Tea Green Leafhopper, Empoasca vitis (G?the)[J]. Tea Science and Technology, (1): 7-11.) doi: 10.3969/j.issn.1007-4872.2014.01.002朱俊庆. 1999. 茶树害虫[M]. 中国农业出版社, 北京. pp. 96-104. (Zhu J Q. 1999. Tea Pests[M]. China Agriculture Press. Beijin. pp. 96-104.)Arenas I, Bravo A, Soberon M, et al. 2010. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin[J]. Journal of Biological Chemistry, 285(17): 12497-12503. doi: 10.1074/jbc.M109.085266Ashouri A. 2004. Seasonal occurrence and relative abundance of aphids on potato plants with classical and transgenic characters of resistance to Colorado Potato Beetle Leptinotarsa decemlineata[J]. Communications in Agricultural and Applied Biological Sciences, 69(3): 273-280. Burgio G, Lanzon i A, Accinelli G, et al. 2007. Evaluation of Bt-to xin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape[J]. Bulletin of Entomological Research, 97(2):211-215. doi: 10.1017/s0007485307004920Chougule N P, Li H, Liu S, et al. 2013. Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests[J]. Proceedings of the National Academy of Sciences, 110(21): 8465-8470. doi: 10.1073/pnas.1222144110Crickmore N, Zeigler D R, Feitelson J, et al. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews, 62(2): 807-813. doi: 10.1016/S0166-4328(01)00289-3Howlader M T H, Kagawa Y, Miyakawa A, et al. 2010. A lanine Scanning Analyses of the Three Major Loops in Do main II of Bacillus Thuringiensis Mosquitocidal To xin Cry4Aa[J]. Applied and Environmental Microbiology, 76(3):860-865. doi: 10.1128/AEM.02175-09Jin M, Baoyu H. 2007. Probing behavior of the tea green leafhopper on different tea plant cultivars[J]. Acta Ecologica Sinica, 22(27): 3973-3982. doi: 10.1016/S1872-2032(07)60083-3Klimowicz A K, Benson T A, Handelsman J. 2010. A quadruple-enterotoxin-deficient mutant of Bacillus thuringiensis remains insecticidal[J]. Microbiology, 156(Pt 12):3575-3583. doi: 10.1099/mic.0.039925-0Miao, J, Han B Y, Zhang Q H. 2014. Probing behavior of Empoasca vitis (Homoptera: Cicadellidae) on resistant and susceptible cultivars of tea plants[J]. Journal of Insect Science, 14. doi: 10.1093/jisesa/ieu085.Pérez C, Fernandez L E, Sun J, et al. 2005. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 102(51):18303-18308. doi: 10.1073/pnas.0505494102Sanchis V. 2011. From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review[J]. Agronomy for Sustainable Development, 31(1): 217-231. doi: 10.1051/agro/2010027Shao E, Liu S, Lin L, et al. 2013. Proteolytic processing of Bacillus thuringiensis toxin Cry1Ab in rice brown planthopper, Nilaparvata lugens (Stal)[J]. Journal of Invertebrate Pathology, 114(3): 255-257. doi: 10.1016/j.jip.2013.09.001Wolfersberger M, Luethy P, Maurer A, et al. 1987. Preparation and partial characterization of aminoacid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae)[J]. Comparative Biochemistry and Physiology Part A: Physiology, 86(2):301-308. doi: 10.1016/0300-9629(87)90334-3Xu J H, Wang N W, Zhang L L, et al. 2005. Study on the economic threshold of tea leafhopper (Empoasca vitis Gothe)[J]. Journal of Tea Science, 25(2): 131-135.Zavala L E, Pardo-López L, Cantón P E, et al. 2011. Do mains II and III of Bacillus thuringiensis Cry1Ab to xin remain exposed to the solvent after insertion of part of domain I into the membrane[J]. Journal of Biological Chemistry, 286(21): 19109-19117. doi: 10.1074/jbc.M110.202994Zhang Z Q, Luo Z X, Gao Y, et al. 2014. Volatiles from non-host aromatic plants repel tea green leafhopper Empoasca vitis[J]. Entomologia Experimentalis Et Applicata, 153(2): 156-169. doi: 10.1111/eea.12236Zuniga-Navarrete F, Gomez I, Pena G, et al. 2015. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12[J]. Insect Biochemistry and Molecular Biology, 59: 50-57. doi: 10.1016/j.ibmb.2015.02.002 |
|
|
|