|
|
Analysis of Differentially Expressed Transcription Factor Genes in Sesame (Sesamum indicum) Under Low Nitrogen Stress |
ZHANG Peng-Yu, SU Xiao-Yu, GAO Tong-Mei, LI Feng, TIAN Yuan, WANG Dong-Yong, WEI Shuang-Ling* |
Sesame Research Center, Henan Academy of Agricultural Sciences/Henan Key Laboratory of Specific Oilseed Crops Genomics/Key Laboratory of Oil Crops in HuangHuaiHai Plains, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China |
|
|
Abstract Transcription factor families play important roles in plant response to nitrogen stress. In order to reveal the expression pattern of transcriptome factor genes in the sesame (Sesamum indicum) under low nitrogen stress, high-throughput sequencing technology was used to analyze the gene expression profile of transcription factors in the roots of sesame varieties 'Zhengzhi HL05' (ZZ, nitrogen-tolerance) and 'Myanmar high-yielding' (MD, nitrogen-sensitive) with different nitrogen efficiency under low nitrogen stress for 3 and 9 d. The results showed that a total of 55 transcription factor families were detected by transcriptome sequencing, with a total of 1 662 transcription factor genes, and 275 differentially expressed genes, accounting for 16.55% of the total. The families with a large number of differentially expressed transcription factor genes including MYB (avian myeloblastosis viral oncogenehomolog), bHLH (basic helix-loop-helix), ERF (ethylene responsive factor), NAC (NAM, ATAF1/2, CUC1/2) and WRKY families. Compared with the control, under low nitrogen stress for 3 d, 86 and 74 differentially expressed transcription factor genes were detected in 'Myanmar high-yielding' and 'Zhengzhi HL05' cultivars, respectively, and the number of down-regulated genes was more than that of up-regulated genes. Under low nitrogen stress for 9 d, 178 and 128 differentially expressed transcription factor genes were detected in each cultivar, and the number of up-regulated genes was more than or equal to that of down-regulated genes. The transcription factor genes in response to low nitrogen stress showed cultivar- specificity. There were 113 and 54 transcription factor genes specifically expressed in 'Myanmar high-yielding' and 'Zhengzhi HL05', respectively. The Venn diagram of differentially expressed transcription factor genes showed that a total of 15 transcription factor genes were differentially expressed in different treatment groups, of which 8 genes up-regulated and 7 genes down-regulated. The results of qRT-PCR validation showed that the change trend of 15 differentially expressed genes was consistent with the sequencing results, which proved the validity of the sequencing results. This study provides a reference basis for further exploring the molecular response mechanism of sesame transcription factor family to low nitrogen stress.
|
Received: 12 July 2022
|
|
Corresponding Authors:
*wsl041162@126.com
|
|
|
|
[1] 李春明, 张海洋, 高桐梅, 等. 2021. 不同氮肥用量对夏芝麻冠层结构, 产量及品质的影响[J]. 河南农业大学学报, 55(5): 862-867. (Li C M, Zhang H Y, Gao T M, et al. 2021. Effects of nitrogen application rate on canopy architecture, yield and quality of summer sesame[J]. Journal of Henan Agricultural University, 55(5): 862-867. ) [2] 李丰, 高桐梅, 卫双玲, 等. 2019. 氮肥氮肥基追施比例对芝麻产量和氮素吸收、分配的影响[J]. 植物营养与肥料学报 , 25(5): 756-764. (Li F, Gao T M, Wei S L, et al. 2019. Optimal ratio of nitrogen basal application and top-dressing for N uptake, distribution and yield of sesame[J]. Journal of Plant Nutrition and Fertilizers, 25(5): 756-764. ) [3] 李亚贞, 肖国滨, 叶川, 等. 2015. 不同氮肥用量对秋播黑芝麻'赣芝 8 号'生长发育及产量的影响[J]. 中国农学通报, 31(18): 69-73. (Li Y Z, Xiao G B, Ye C, et al. 2015. Effects of different nitrogen application amount on the growth and yield of autumn sowing black sesame 'Ganzhi 8'[J]. Chinese Agricultural Science Bulletin, 31(18): 69-73. ) [4] 梁小利. 2020. 西藏野生大麦 HvbHLH56 介导的低氮耐性机理研究[D]. 硕士学位论文, 济南大学, 导师: 何文兴, 全晓艳 , pp. 33-41. (Liang X L. 2020. Study on the mechanism of low nitrogen tolerance mediated by Tibet‐an wild barley HvbHLH56[D]. Thesis for M. S. , University of Jinan, Supervisor: He W X, Quan X Y, pp. 33-41. ) [5] 潘越. 2021. 过表达 ZmNF-YA13 提高烟草和玉米氮营养吸收[D]. 硕士学位论文, 大连理工大学, 导师: 苏乔, pp. 37-49. (Pan Y. 2021. Overexpression of ZmNF-YA13 increased nitrogen uptake in tobacco and maize[D]. Thesis for M. S. , Dalian University of Technology, Supervisor: Su Q, pp. 37-49. ) [6] 于冰, 田烨, 李海英, 等. 2019. 植物 bHLH 转录因子的研究进展[J]. 中国农学通报, 35(9): 75-80. (Yu B, Tian Y, Li H Y, et al. 2019. Research progress of plant bHLH transcription factor[J]. Chinese Agricultural Science Bulletin, 35(9):75-80. ) [7] 张鹏钰, 付家旭, 仇晓, 等. 2022a. 玉米干旱-复水处理差异表达 MYB-related 基因的鉴定与分析[J]. 农业生物技术学报 , 30(2): 222-235. (Zhang P Y, Fu J X, Qiu X, et al. Identification and analysis of differentially expressed MYB-related genes in maize(Zea mays) under drought stress and rewatering[J]. Journal of Agricultural Biotechnology, 30(2): 222-235. ) [8] 张鹏钰, 高桐梅, 苏小雨, 等. 2022b. 芝麻苗期氮高效品种筛选及氮效率评价体系建立[J]. 河南农业科学 , 51(6): 54-66. (Zhang P Y, Gao T M, Su X Y, et al. 2022. Screening of nitrogen efficient varieties and construction of nitrogen efficiency assessment system at seedling stage of sesame (Sesamum indicum L. )[J]. Journal of Henan Agricultural Sciences, 51(6): 54-66. ) [9] 张鹏钰, 王国瑞, 曹丽茹, 等. 2020. 干旱胁迫和复水处理下玉米差异表达转录因子基因分析[J]. 农业生物技术学报, 28(2): 211-222. (Zhang P Y, Wang G R, Cao L R, et al. 2020. Analysis of differentially expressed transcription factor genes in maize (Zea mays) under drought stress and re-watering[J]. Journal of Agricultural Biotechnology, 28(2): 211-222. ) [10] 张文云, 张建诚, 姚景珍. 2020. 氮胁迫下小麦叶片转录组分析[J]. 中国农业科技导报, 22(11): 26-34. (Zhang W Y, Zhang J C, Yao J Z. 2020. Comparative transcriptome analysis of wheat leaf in response to low nitrogen stress[J]. Journal of Agricultural Science and Technology, 22(11): 26-34. ) [11] 赵明辉, 马殿荣, 王嘉宇, 等. 2012. 低氮胁迫下水稻剑叶转录因子表达变化[J]. 中国水稻科学 , 26(3): 275-282. (Zhao M H, Ma D R, Wang J Y, et al. 2012. Expression of transcription factors of rice flag leaf under low nitrogen stress[J]. Chinese Journal of Rice Science, 26(3): 275-282. ) [12] 周永斌. 2020. GmDREB1/3 转基因小麦抗旱、耐低氮性评价及作用机制解析[D]. 博士学位论文, 西北农林科技大学, 导师: 王成社, pp. 60-88. (Zhou Y B. 2020. Drought resistance and low nitrogen tolerance evaluation and mechanism analysis of GmDREBl/3 transgenic wheat [D]. Thesis for Ph. D. , Northwest A & F University, Supervisor: Wang C S, pp. 60-88. ) [13] Alfatih A, Wu J, Zhang Z S, et al. 2020. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency[J]. Journal of Experimental Botany, 71(19): 6032-6042. [14] Ding Q Q, Wang X T, Hu L Q, et al. 2018. MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L. ) enhances Arabidopsis tolerance to low-nitrogen stress[J]. Hereditas (Beijing), 40(4): 327-338. [15] Du Q G, Yang J, Muhammad S, et al. 2021. Comparative transcriptome analysis of the different nitrogen responses in low nitrogen-sensitive and -tolerant maize genotypes[J]. Journal of Integrative Agriculture, 20(8): 2043-2055. [16] Dugassa N F, Behzad H, Miakael B, et al. 2015. Analysis of interactions between heterologously produced bHLH and MYB proteins that regulate anthocyanin biosynthe‐sis: Quantitative interaction kinetics by microscale ther‐mophoresis[J]. Phytochemistry, 111: 21-26. [17] Ma G, Liu W X, Li S S, et al. 2019. Determining the optimal N input to improve grain yield and quality in winter wheat with reduced apparent N loss in the North China Plain[J]. Frontiers in Plant Science, 10: 181. [18] Kurai T, Wakayama M, Abiko T, et al. 2011. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions[J]. Plant Biotechnology Journal, 9(8): 826-837. [19] Li W, Jiang T. 2012. Transcriptome assembly and isoform expression level estimation from biased RNA-seq reads[J]. Bioinformatics, 28(22): 2914-2921. [20] Liu X, Liu H F, Li H L, et al. 2022. MdMYB10 affects nitrogen uptake and reallocation by regulating the nitrate transporter MdNRT2. 4-1 in the red flesh apple[J]. Horticulture, 9: 16. [21] Ge L H, Dou Y N, Li M M, et al. 2019. SiMYB3 in foxtail millet (Setaria italica) confers tolerance to low-nitrogen stress by regulating root growth in transgenic plants[J]. International Journal of Molecular Sciences, 20(22): 5741. [22] Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J]. Methods, 25(4): 402-408. [23] Martin L B, Fei Z J, Giovannoni J J, et al. 2013. Catalyzing plant science research with RNA-seq[J]. Frontiers in Plant Science, 4(66): 66. [24] McAllister C H, Beatty P H, Good A G, et al. 2012. Engineering nitrogen use efficient crop plants: The current status[J]. Plant Biotechnology Journal, 10(9): 1011-1025. [25] Miyake K, Ito T, Senda M, et al. 2003. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions[J]. Plant Molecular Biology, 53(1-2): 237-245. [26] Peng S, Buresh R J, Huang J, et al. 2006. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J]. Field Crops Research, 96(1): 37-47. [27] Quan X, Zeng J, Ye L, et al. 2016. Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen[J]. BMC Plant Biology, 16(1): 30. [28] Sabannavar S J, Lakshman H C. 2011. Interactions between azotobacter, pseudomonas and arbuscular mycorrhizal fungi on two varieties of Sesamum indicum L[J]. Journal of Agronomy & Crop Science, 42(6): 2122-2133. [29] Sachin H, Manpreet K, Rebecca P, et al. 2019. WRKY1 mediates transcriptional regulation of light and nitrogen signaling pathways[J]. Plant Physiology, 181(3): 1371-1388. [30] Tian F, Yang D C, Meng Y Q, et al. 2019. PlantRegMap: Charting functional regulatory maps in plants[J]. Nucleic Acids Research, 48(D1): D1104-D1113. [31] Nagalakshmi U, Wang Z, Waern K, et al. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing[J]. Science, 320(5881): 1344-1349. [32] Wang D J, Xu T Q, Yin Z K, et al. 2020. Overexpression of OsMYB305 in rice enhances the nitrogen uptake under low-nitrogen condition[J]. Frontiers in Plant Science, 11: 369. [33] Wei L B, Miao H M, Zhao R H, et al. 2013. Identification and testing of reference genes for sesame gene expression analysis by quantitative real-time PCR[J]. Planta, 237(3): 873-889. [34] Yu J, Xuan W, Tian Y L, et al. 2021. Enhanced OsNLP4-Os‐NiR cascade confers nitrogen use efficiency by promoting tiller number in rice[J]. Plant Biotechnology Journal, 19(1): 167-176. [35] Zhao W C, Yang X Y, Yu H J, et al. 2015. RNA-seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network[J]. Plant & Cell Physiology, 56(3): 455-467. [36] Were B A, Onkware A O, Gudu S, et al. 2006. Seed oil content and fatty acid composition in East African sesame (Sesamum indicum L. ) accessions evaluated over 3 years[J]. Field Crops Research, 97(2-3): 254-260. [37] Yang S Y, Hao D L, Song Z Z, et al. 2015. RNA-seq analysis of differentially expressed genes in rice under varied nitrogen supplies[J]. Gene, 555(2): 305-317. [38] Yang T R, Hao L, Yao S F, et al. 2016. TabHLH1, a bHLH- type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis[J]. Plant Physiology & Biochemistry, 104: 99-113. [39] Yang Y, Feng W, Wan Q, et al. 2018. Transcriptome analysis using RNA-seq revealed the effects of nitrogen form on major secondary metabolite biosynthesis in tea (Camel-lia sinensis) plants[J]. Acta Physiologiae Plantarum, 40(7): 127. [40] Zhan X, Zhang Q, Zhang H, et al. 2020. Pathways of nitrogen loss and optimized nitrogen management for a rice cropping system in arid irrigation region, northwest China[J]. Journal of Environmental Management, 268: 110702. [41] Zou Y Y, Tang H P, Li T, et al. 2020. Identification and charac‐terization of mRNAs and lncRNAs of a barley shrunken endosperm mutant using RNA-seq[J]. Genetica, 148(2): 55-68. |
|
|
|