|
|
Cloning and Expression Analysis of Linalool Synthase CcTPS14 from Cinnamomum camphora var. linaloolifera |
CAO Rui-Lan1, ZHOU Zeng-Liang2, REN Zhi-Hua1, WANG Xi-Zheng1, CHENG Qin-Hua1, HU Dong-Nan1, CHEN Shang-Xing1, LIU Juan1* |
1 Jiangxi Provincial Key Laboratory of Silviculture/College of Forestry, Jiangxi Agricultural University, Nanchang 330045; 2 Jiangxi Forestry Ecological Engineering Construction Center, Nanchang 330103 |
|
|
Abstract Cinnamomum camphora var. linaloolifera is a kind of camphor trees with linalool-rich essential oils in their branches and leaves. Due to its high economic value, this variety has become one of the important industrial material tree species in South China. In this study, a linalool synthase gene (CcTPS14) was cloned from C. camphora var. linaloolifera, and was analyzed based on bioinformatics, phylogeny and tissue-specific expression patterns. The results showed that the full length of CcTPS14 was 725 bp, with a 684 bp CDS and encoding 227 amino acids. The relative molecular weight of CcTPS14 protein was 25.69 kD, the theoretical isoelectric point was 5.39. The fat coefficient was 87.19 and the instability coefficient was 51.40. The CcTPS14 protein was unstable and hydrophilic. Based on subcellular localization predicts, CcTPS14 was mostly located in chloroplasts. Its secondary structure was mainly irregular crimping (65.86%) and α -helix (22.52%), with a small amount of extended chains (12.60%) and β-folding (9.01%). Phylogenetic relationship analysis showed that CcTPS14 was closely related to TPS from C. micranthum and C. osmophloeum, indicating that the presence of similar evolutionary process and biological function of those TPS genes in different species. And it was distantly related to TPS genes from Tetracentron sinensis and Rhododendron griersonianum. The relative expression of CcTPS14 in different tissues of C. camphora was significantly different (P<0.05), among which the expression was higher in mature tissues (such as stems and old leaves) and lower in young tissues (such as young leaves, young fruits and flowers). This study provides the molecular basis and theoretical reference for further understanding of the functional of CcTPS14.
|
Received: 28 March 2022
|
|
Corresponding Authors:
* liu_juan1122@163.com
|
|
|
|
[1] 曹瑞兰, 胡冬南, 周增亮, 等. 2021. 芳樟叶片转录组测序及萜类合成调控相关基因表达分析[J]. 西南林业大学学报(自然科学), 41(05): 49-57. (Cao R L, Hu D N, Zhou Z L, et al., 2021. Transcriptome sequencing of linalool leaf and expression analysis of genes involved in ter-pene synthesis[J]. Journal of Southwest Forestry Univer-sity (Natural Science), 41(5): 49-57. ) [2] 陈天池, 吴月燕, 沈乐意, 等. 2022. 葡萄 TPS 基因家族的鉴定与表达分析[J/OL]. 分子植物育种, (Cheng T C,Wu Y W, Shen L Y, et al. 2022. Identification and expres-sion analysis of TPS genes family in grape[J/OL]. Mo-lecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20210722.1430.018.html [3] 丁菲, 庞磊, 李叶云, 等. 2012. 茶树海藻糖-6-磷酸合成酶基因(CsTPS)的克隆及表达分析[J]. 农业生物技术学报, 20(11): 1253-1261. (Ding F, Pang L, Li Y Y, et al. 2012. Cloning and expression analysis of trehalose-6-phos-phate synthase gene (CsTPS) from tea plant (Camellia si-nensis (L. ) O. Kuntz)[J]. Journal of Agricultural Biotech-nology, 20(11): 1253-1261. ) [4] 丁泽红, 付莉莉, 吴春来, 等. 2018. 木薯 MeTPS1 基因克隆、 表达及生物信息学分析[J]. 江苏农业科学, 46(09): 28-33. (Ding Z H, Fu L L, Wu C L, et al. 2018. Cloning, ex-pression and bioinformatic analysis of MeTPS1 gene in cassava[J]. Jiangsu Agricultural Sciences, 46(09): 28-33. ) [5] 龚林涛, 苏秀娟, 廖燕, 等. 2021. 薰衣草芳樟醇合酶基因的克隆 、表达及酶活性检测[J]. 作物杂志, (06): 78-87. (Gong L T, Su X J, Liao Y, et al. 2021. Cloning, expres-sion and enzyme activity detection of lavender linalool synthase gene[J]. Crops, (06): 78-87. ) [6] 胡智慧, 翁彦如, 谌柄旭, 等. 2019. 萜类合成酶定向进化的新思路[J]. 微生物学报, 59(04): 591-600. (Hu Z H, Weng Y R, Chen B X, et al. 2019. Innovations for direct-ed evolution of terpenoid synthases[J]. Acta Microbio-logica Sinica, 59(04): 591-600. ) [7] 江香梅, 伍艳芳, 肖复明, 等. 2014. 樟树 5 种化学类型叶片转录组分析[J]. 遗传, 36(01): 58-68. (Jiang X M, Wu Y F, Xiao F M, et al. 2014. Transcriptome analysis for leaves of five chemical types in Cinnamomum camphora[J]. Hereditas, 36(01): 58-68. ) [8] 江燕. 2018. 芳樟醇型樟叶精油中主要成分变化规律的研究[J]. 香料香精化妆品, (06): 1-3. (Jiang Y. 2018. Study on the change law of main components in essential oil linalool-type Cinnamomum camphor (L. ) presl leaves[J]. Flavour Fragrance Cosmetics, (06):1-3. ) [9] 李伟丹. 2018. 香樟树的特征特性及栽培技术[J]. 乡村科技, (15): 60-61. (Li W D. 2018. Characteristics and cultiva-tion techniques of Cinnamomum camphora[J]. Rural Sci-ence and Technology, (15): 60-61. ) [10] 刘偲, 席婉, 袁金梅, 等. 2020. 桂花'莲籽丹桂'芳樟醇合酶基因 OfTPS5 的克隆及功能鉴定[J]. 园艺学报, 47(02): 310-320. (Liu C, Xi W, Yuan J M, et al. 2020. Molecular cloning and functional characterization of linalool syn-thase gene OfTPS5 in Osmanthus fragrans 'Lianzi Dan-gui' flowers[J]. Acta Horticulturae Sinica, 47(02): 310-320. ) [11] 苏宝川. 2022. 不同立地环境对芳樟精油产量及质量的影响[J]. 福建林业科技, 49(03): 58-62. (Su B C. 2022. Ef-fects of different site environments on the yield and quality of Cinnamomum camphora essential oil[J]. Jour-nal of Fujian Forestry Science and Technology, 49(03): 58-62. ) [12] 唐丽, 唐芳, 段经华, 等. 2009. 金桂芳樟醇合成酶基因的克隆与序列分析 ( 英文)[J]. 林业科学, 45(05): 11-19. (Tang L, Tang F, Duan J H, et al. 2009. Cloning and se-quence analysis of a homologous linalool synthase gene involved in floral scents in Osmanthus fragrans var. thun-bergii[J]. Scientia Silvae Sinicae, 45(05): 11-19. ) [13] 魏兵强, 王兰兰, 张茹, 等. 2016. 辣椒 TPS 家族成员的鉴定与 CaTPS1 的表达分析[J]. 园艺学报, 43(08): 1504-1512. (Wei B Q, Wang L L, Zhang R, et al. 2016. Identi-fication of CaTPS gene family and expression analysis of CaTPS1 in hot pepper[J]. Acta Horticulturae Sinica, 43(08): 1504-1512. ) [14] 于程伟. 2016. 从樟树不同部位提取精油的研究[C]. 上海 : 第十一届中国香料香精学术研讨会. (Yu C W. 2016. Study on extraction of essential oil from different parts of camphor tree[C]. Shanghai: The eleventh China sym-posium on flavor and fragrance. ) [15] 于欢. 2019. 甘薯海藻糖-6-磷酸合成酶基因 IbTPS1 克隆与功能鉴定[D]. 硕士学位论文, 山西农业大学, 导师: 王文斌, pp. 10-15. (Yu H. 2019. Cloning and functional identification of trehalose-6-phosphate synthase gene IbTPS1 from Ipomoea batatas (L. ) Lam[D]. Thesis for M. S., Shanxi Agricultural University, Supervisor: Wang W B, pp. 10-15. ) [16] 章亚芳. 2012. 矮化芳樟叶和小枝挥发油的提取工艺及其成分分析研究[D]. 硕士学位论文, 南昌大学, 导师: 蒋柏泉, pp. 19-26. (Zhang Y F. 2012. Study on process and component analysis for volatile oil extraction from dwarf aromatic camphor leaves and twigs[D]. Thesis for M. S., Nanchang University, Supervisor: Jiang B Q, pp. 19-26. ) [17] 郑红富, 廖圣良, 范国荣, 等. 2019. 水蒸气蒸馏提取芳樟精油及其抑菌活性研究[J]. 林产化学与工业, 39(03): 108-114. (Zheng H F, Liao S L, Fan G R, et al. 2019. Extraction of Cinnamomum camphora essential oil by steam distillation and its antifungal activity[J]. Chemis-try and Industry of Forest Products, 39(03): 108-114. ) [18] Boachon B, Junker R R, Miesch L, et al. 2015. CYP76C1 (Cy-tochrome P450) -mediated linalool metabolism and the formation of volatile and soluble linalool oxides in Ara-bidopsis flowers: A strategy for defense against floral an-tagonists[J]. Plant Cell, 27(10): 2972-2990. [19] Bonisch F, Frotscher J, Stanitzek S, et al. 2014. Activity-based profiling of a physiologic aglycone library reveals sugar acceptor promiscuity of family 1 UDP-Glucosyltransfer-ases from grape[J]. Plant Physiology, 166(1): 23-29. [20] Chen C H, Zheng Y J, Zhong Y D, et al. 2018. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora[J]. BMC Ge-nomics, 19(1): 550. [21] Gao F Z, Liu B F, Li M, et al. 2018. Identification and charac-terization of terpene synthase genes accounting for vola-tile terpene emissions in flowers of Freesia × hybrida[J]. Journal of Experimental Botany, 69(18): 4249-4265. [22] Nagegowda D A, Gutensohn M, Wllkerson C G, et al. 2010. Two nearly identical terpene synthases catalyze the for-mation of nerolidol and linalool in snapdragon flowers[J]. Plant Journal, 55(2): 224-239. [23] Natalia D, Dlane M, Christine M K, et al. 2003. (E)-beta-oci-mene and myrcene synthase genes of floral scent biosyn-thesis in snapdragon: Function and expression of three terpene synthase genes of a new terpene synthase sub-family[J]. The Plant Cell, 15(5): 1227-1241. [24] Van Schie Chris C N, Haring Michel A, Schuurink Robert C. 2007. Tomato linalool synthase is induced in trichomes by jasmonic acid[J]. Plant Molecular Biology, 64(3): 251-263. [25] Yang H L, Liu Y J, Wang C L, et al. 2012. Molecular evolu-tion of trehalose-6-phosphate synthase (TPS) gene fami-ly in Populus, Arabidopsis and rice[J]. PLOS ONE, 7(8): e42438. [26] Yu F, Utsumi R. 2009. Diversity, regulation, and genetic ma-nipulation of plant mono-and sesquiterpenoid biosyn-thesis[J]. Cellular and Molecular Life Sciences, 66(18): 3043-3052. [27] Yue Y, Yu R, Fan Y, 2014. Characterization of two monoter-pene synthases involved in floral scent formation in hedychium coronarium[J]. Planta, 240(4): 745-762. [28] Zhang Y Y, Elnur E, Ni Z J, et al. 2022. LC-MS/MS targeting analysis of terpenoid metabolism in Carya cathayensis at different developmental stages[J]. Food Chemistry, 366: 130583-130583. [29] Zhou P P, Du Y, Xu N N, et al. 2020. Improved linalool pro-duction in Saccharomyces cerevisiae by combining direct-ed evolution of linalool synthase and overexpression of the complete mevalonate pathway[J]. Biochemical Engi-neering Journal, 161: 107655. |
|
|
|