|
|
Tissue Expression of Lnc_000588 in Sunite Sheep (Ovis aries) and Prediction of Its Interaction Molecules in Regulating Muscle Growth and Development |
GONG Wen-Dian1, WANG Rui-Xue1, WANG Rong1, LIU Jun-Yang1, MU Qing1, Terigele1, WU Zi-Xian2, LI Yun-Hua2, LIU Jia-Sen2,*, ZHAO Yan-Hong1,* |
1 College of Animal Science, Inner Mongolia Agricultural University/Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction/Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; 2 Animal Husbandry Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China |
|
|
Abstract Sunite sheep (Ovis aries) is high-quality mutton sheep resources in China and one of the main sources of mutton in northern China. Long non-coding RNA (LncRNA) plays an important role in muscle development in O. aries. To predict the regulatory network of Lnc_000588 in skeletal muscle development of Sunite sheep, in this study, the real-time quantitative PCR analysis was performed on its tissue expression in different parts, and the prediction of bioinformatics interaction of targeted miRNA-mRNA was carried out. Meanwhile, the expression of Lnc_000588 was detected in mouse (Mus musculus) C2C12 cells. Lnc_000588 was expressed in all tissues, and the expression level in the longissimus dorsi muscle was significantly higher than that in other tissues (P<0.01); there was no significant difference in Lnc_000588 during cell proliferation, and the expression level in C2C12 cells increased with the prolongation of differentiation time and the increase of myotubes, the expression after 48 h was extremely significantly higher than that in the earlier period (P<0.01). From Lnc_000588 involved in the regulation of the muscle growth and development through miRNA, a total of 32 miRNAs were predicted, of which 3 miRNAs were found to be related with muscle development. The target genes of these 3 miRNAs are enriched in the Ras signaling pathway (oas04014: Ras 66 pathways including), Rap1 signaling pathway (oas04015: Rap1 signaling pathway) and AMPK signaling pathway (oas04152: AMPK signaling pathway). In conclusion, the expression level of Lnc_000588 in Sunite sheep muscle tissue was significantly higher than that in other tissues, which may be involved in the differentiation of C2C12 cells. This study provides basic data for exploring the regulatory function of LncRNA involved in the muscle tissue of Sunite sheep.
|
Received: 05 January 2022
|
|
Corresponding Authors:
* 13947196432@163.com; jsliu588@163.com
|
|
|
|
[1] 高凤明, 白乙尔图, 刘金, 等. 2014. 苏尼特羊及羊肉的品质与营养[J]. 中国畜牧兽医文摘, 12: 43-44. (Gao F M, Bai Y T, Liu J.2014. Quality and nutrition of Sunid sheep and mutton[J]. China Animal Husbandry and Veterinary Digest, 12: 43-44.) [2] 靳建军. 2018. 长非编码RNA SYISL对肌肉生长发育的影响及其分子机制研究[D]. 博士学位论文, 华中农业大学, 导师: 左波. pp. 61-62. (Jin J J, 2018. The role and molecular mechanism of long noncoding RNA SYISL in the regulation of skeletal muscle growth and development[D]. PhD thesis. Huazhong Agricultural University, Supervisor: Zuo B, pp. 61-62.) [3] 刘丑生, 赵兴波, 李宁, 等. 2003. 动物肌肉生长发育调控的功能基因研究进展[J]. 中国畜牧杂志, 5: 48-49. (Liu C S, Zhao X B, Li N, et al.2003. Advances on functional gene of regulation of skeletal muscle growth in animals[J]. Chinese Journal of Animal Science, 5: 48-49) [4] 秦本源, 李步高, 曹果清, 等. 2019. 调控肌肉生长发育的LncRNAs[J]. 中国生物化学与分子生物学报, 35(2): 113-120. (Qin B Y, Li B G, Cao G Q.2019. LncRNAs Regulating muscle growth and development[J]. Chinese Journal of Biochemistry and Molecular Biology, 35(2): 113-120) [5] 睢梦华. 2019. Lnc_002783在山羊骨骼肌中的表达及功能研究[D]. 硕士学位论文, 安徽农业大学, 导师: 凌英会. pp. 23-27. (Su M H.2019. Study on expression and function of Lnc_002783 in goat skeletal muscle[D]. Thesis for M. S. Anhui Agricultural University, Supervisor: Ling Y H, pp. 23-27.) [6] 孙燕勇, 付绍印, 祁云霞, 等. 2019. 绵羊骨骼肌生长发育调控基因研究进展[J]. 中国畜牧兽医, 46(5): 1429-1438. (Sun Y Y, Fu S Y, Qi Y X, et al.2019. Research Advances on regulation genes of growth and development of skeletal muscle in sheep[J]. China Animal Husbandry and Veterinary, 46(5): 1429-1438) [7] 王力先. 2015. NF-κB信号通路与骨骼肌萎缩研究进展[J]. 生命的化学. 35(2): 188-192. (Wang L X, 2015. Research progress of NF-κB signaling and skeletal muscle atrophy[J]. Chemistry of life, 35(2): 188-192) [8] 王瑞雪, 刘佳森, 李蕴华, 等. 2021. 苏尼特羊不同生长时期肌肉组织LncRNA的差异表达分析[J]. 中国农业大学学报, 26(1): 51-61. (Wang R X, Liu J S, Li Y H, et al.2021. Differential expression analysis of LncRNA in muscle tissues of sunit sheep at different growth stages[J]. Journal of China Agricultural University, 26(1): 51-61) [9] 王晓静. 2017. 长非编码RNA-AK003290在成肌细胞增殖和分化过程中的功能研究[D]. 硕士学位论文, 华中农业大学, 导师: 徐在言, pp. 37-38. (Wang X J.2017. Study on the function of long non-coding RNA AK003290 in the proliferation and differentiation of myoblast cells[D]. Thesis for M. S. Huazhong Agricultural University, Supervisor: Xu Z Y, pp. 37-38.) [10] 吴明明. 2016. Lnc-SEMT促进绵羊肌肉分化生成的功能研究[D]. 博士学位论文, 中国农业大学, 导师: 王楚端; 杜立新, pp. 60-65. (Wu M M.2016. Research of Lnc-SEMT function in the process of enhancing sheep muscle differentiation and generation[D]. PhD thesis. China Agricultural University, Supervisor : Wang C D, Du L X, pp. 60-65.) [11] 余家奥, 黎镇晖, 王芷筠, 等. 2020. LncRNA-FKBP1C通过顺式调控DNMT3B影响鸡骨骼肌生长[J]. 中国家禽, 42(11): 5-10. (Yu J A, Li Z H, Wang Z J, et al .2020. LncRNA-FKBP1C affecting skeletal muscle development by cis regulating DNMT3B in chicken[J]. China Poultry, 42(11): 5-10) [12] 占思远. 2017. 山羊胎儿背最长肌发育过程中LncRNAs的鉴定及其功能验证[D]. 博士学位论文, 四川农业大学, 导师: 张红平, pp. 69-87. (Zhan S Y.2017. Identification and functional verification of long non-coding RNAs in the fetal longissimus dorsi muscle development of goat[D]. PhD thesis. Sichuan Agricultural University, Supervisor : Zhang H P, pp. 69-87.) [13] 郑琪. 2020. 胎儿到羔羊七个阶段的山羊背最长肌组织学特性及mRNA和IncRNA调控网络分析[D]. 安徽农业大学, 导师: 凌英会, pp. 16-22. (Zheng Q.2020. Analysis of Histological characteristics and mRNA and lncRNA Regulatory network of goat longissimus dorsal muscle in seven stages from fetuses to kids[D]. Anhui Agricultural University. Supervisor: Ling Y H, pp. 16-22.) [14] 周瑞, 王以鑫, 龙科任, 等. 2018. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 40(4): 292-304. (Zhou R, Wang Y X, Long K R, et al.2018. Regulatory mechanism for LncRNAs in skeletal muscle development and progress on its research in domestic animals[J]. Hereditas, 40(4): 292-304.) [15] Chao T, Ji Z, Hou L, Wang J, Zhang C, et al.2018. Sheep skeletal muscle transcriptome analysis reveals muscle growth regulatory LncRNAs[J]. PeerJ. 6: 2167-8359. [16] Chen R, Lei S, She Y, et al.2021. Lnc-GD2H promotes proliferation by forming a feedback loop with c-Myc and enhances differentiation through interacting with NACA to upregulate myog in C2C12 myoblasts[J]. Frontiers in Cell and Developmental Biology, 9: 2296-6340. [17] Girardi F, Le Grand F.2018. Wnt signaling in skeletal muscle development and regeneration[J]. Progress in Molecular Biology and Translational Science, 153: 157-179. [18] Han X, Yang F, Cao H, Liang Z, et al.2015. Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis[J]. FASEB Journal. 29(7): 3054-3064. [19] Kallen AN, Zhou XB, Xu J, et al.2013. The imprinted H19 LncRNA antagonizes let-7 microRNAs[J]. Molecular Cellular. 1: 101-120. [20] Landais I, Pelton C, Streblow D, et al.2015. Human cytomegalovirus miR-UL112-3p targets TLR2 and modulates the TLR2/IRAK1/NFκB signaling pathway[J]. PLOS Pathogens 5: 1553-7366. [21] Li C Y, Li X, Liu Z, et al.2019. Identification and characterization of long non-coding RNA in prenatal and postnatal skeletal muscle of sheep[J]. Genomics. 2: 133-141. [22] Li L, Dong H, Wei T T, Xiao X, et al.2018. A feedforward regulatory loop between HuR and long noncoding RNA MALAT1 promotes osteogenic differentiation of human aortic valve interstitial cells[J]. Social Science Electronic Publishing.. 24: 39896-39921. [23] Li Yang, Lv Yumin, Cheng Chao, et al.2020, SPEN induces miR-4652-3p to target HIPK2 in nasopharyngeal carcinoma.[J]. Cell death & disease, 11(7): 2-12. [24] Li Q, Liu R, Zhao H, et al.2018. Identification and characterization of long noncoding RNAs in ovine skeletal muscle. Animals (Basel). 7: 2076-2615. [25] Ling Y, Zheng Q, Sui M, et al.2019. Comprehensive analysis of LncRNA reveals the temporal-specific module of goat skeletal muscle development[J]. International Journal of Molecular Sciences. 16: 1422-1467. [26] Liu M, Li B, Peng W, et al.2019. LncRNA-MEG3 promotes bovine myoblast differentiation by sponging miR-135[J]. Journal of Cellular Physiology. 234(10): 18361-18370. [27] Mäkitie RE, Hackl M, Niinimäki R, et al.2018. Altered MicroRNA profile in osteoporosis caused by impaired WNT signaling[J]. Journal of Clinical Endocrinology & Metabolism, 103(5): 1985-1996. [28] Musumeci G, Castrogiovanni P, Coleman R, et al.2015. Somitogenesis: From somite to skeletal muscle[J]. Acta Histochem. 117(4-5): 313-328. [29] Quan M, Chen J, Zhang D.2015. Exploring the secrets of long noncoding RNAs[J]. International Journal of Molecular Sciences. 16(3): 5467-5496. [30] Ren C, Deng M, Fan Y, et al.2017. Genome-wide analysis reveals extensive changes in LncRNAs during skeletal muscle development in Hu sheep[J]. Genes (Basel). 8(8): 2073-4425. [31] Xu L, Zhu S, Tang A, Liu W, et al.2021. LncRNA MBLN1-AS1 inhibits the progression of retinoblastoma through targeting miR-338-5p-Wnt/β-catenin signaling pathway[J]. Inflammation Research, 70(2): 217-227. [32] Yu X, Wang Z, Sun H, et al.2018. Long non-coding MEG3 is a marker for skeletal muscle development and meat production traits in pigs[J]. Animal Genetics. 49(6): 571-578. [33] Yu X, Zhang Y, Li T, et al.2017. Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD[J]. Nature Communications. 8: 1723-2041. [34] Zhang M, Zhang M Z, Wen S H, et al.2019. The distribution and time-dependent expression of HIPK2 during the repair of contused skeletal muscle in mice[J]. Histology and histopathology. 7: 745-753. [35] Zhang Z K, Li J, Guan D, et al.2018. A newly identified LncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration[J]. Journal of Cachexia Sarcopenia & Muscle. 3: 613-626. |
|
|
|