|
|
Identification of FAF Gene Family and Excavation of Branch Forming Related Members in Brassica napus |
JIANG Xian-Run1, LUO Gui-Lin1, LIANG Feng-Hao2, HUANG Sha2, XIAO Hua-Gui2, ZHANG Chao2,*, DAI Wen-Dong3,* |
1 College of Agriculture, Guizhou University, Guiyang 550025, China; 2 Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; 3 Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China |
|
|
Abstract The FAF gene family is one of the unique transcription factors in the plant kingdom and plays a role in regulating the size of meristem. In order to study the effect of FAF gene on branch formation in Brassica napus, genome-wide identification and bioinformatics analysis of FAF family in B. napus were performed in this study. In addition, qPCR was used to investigate the spatiotemporal expression of BnFAFs in the 3 pairs of extreme phenotype materials with different branch number. The results showed that there were 17 BnFAFs distributing on 13 chromosomes in B. napus. Based on the similarity of amino acid sequence, BnFAFs were divided into 4 subfamilies Ⅰ ~ Ⅳ by referring to Arabidopsis FAFs. Gene structure and protein structure identification showed that members of Ⅳ subfamilies were rather differentiated, while other subfamily members were relatively conserved. qPCR analysis showed that the expression pattern of BnFAF4-4 and BnFAF4-7 were consistent, and the relative expression of BnFAF4-4 and BnFAF4-7 in stem, upper axillary bud and middle axillary bud of multi-branched materials were significantly higher than that of less branched materials in bolting stage suggesting that these genes may affect the formation of branches. This study laid a foundation for further improvement of branch traits by using FAF gene in B. napus.
|
Received: 26 September 2021
|
|
Corresponding Authors:
*d5430093@sina.com; 18083606406@163.com
|
|
|
|
[1] 符明联, 赵凯琴, 李庆刚, 等 . 2019. 生姜地迟播油菜种植模式研究[J]. 西南农业学报, 32(08): 1746-1750. (Fu M L, Zhao K Q, Li Q G, et al.2019. Planting pattern of late sowing rape after harvesting ginger[J]. Southwest China Journal of Agricultural Sciences, 32(08): 1746-1750.) [2] 郭娜, 左凯峰, 张淼, 等 . 2020. 甘蓝型油菜主要株型和产量性状的综合分析[J]. 西北农业学报, 29(06): 898-906. (Guo N, Zuo K F, Zhang M, et al.2020. Comprehensive analysis of major plant-type and yield traits in Brassica napus L.[J] Acta Agriculturae Boreali-occidentalis Sinica, 29(06): 898-906.) [3] 郭素平, 袁燕, 德庆, 等 . 2020. 西藏白菜型黄籽油菜农艺性状与产量的评价分析[J]. 高原农业 , 4(05): 447-453. (Guo S P, Yuan Y, De Q, et al.2020. Evaluation and analysis of agronomic characters and yield of tibetan cabbage yellow-seed rape[J]. Journal of Plateau Agriculture, 4(05): 447-453.) [4] 顾巧美, 赵云燕, 彭澳怡, 等 . 2021. 甘蓝型油菜 SERK 基因家族的鉴定与系统进化分析[J]. 中国油料作物学报, 1-12. (Gu Q M, Zhao Y Y, Peng A Y, et al.2021. Genome-wide identification and phylogenetic analysis of SERK gene family in Brassica napus[J]. Chinese Journal of Oil Crop Sciences, 1-12.) DOI:10.19802/j.issn.1007-9084.2020282 [5] 贺丹, 杨太桦, 黎婷, 等 . 2021. 甘蓝型油菜 ZIP 基因家族全基因组鉴定与表达分析[J]. 中国油料作物学报 , 43(03): 392-404. (He D, Yang T H, Li T, et al.2021. Genome-wide identification and expression analysis of ZIP transporter gene family in Brassica napus[J]. Chinese Journal of Oil Crop Sciences, 43(03): 392-404.) [6] 贺亚军, 钱伟, 游婧璨, 等 . 2019. 油菜 BnaB1 基因及其在调控分枝数和株型上的应用[P]. 中国: CN109777809A. (He Y J, Qian W, You J C, et al. 2019. BnaB1 gene and its application in regulating branch number and plant type in Brassica napus L.[P]. China: CN109777809A.) [7] 黄成, 梁晓梅, 戴成, 等. 2021. 甘蓝型油菜BnAPs 基因家族成员全基因组鉴定及分析[J]. 作物学报: 1-22. (Huang C, Liang X M, Dai C, et al. 2021. Genome wide analysis of BnAPs gene family in Brassica napus[J/OL]. Acta Agronomica Sinica: 1-22].)http://kns.cnki.net/kcms/detail/11.1809.S.20210714.1250.002.html. [8] 冷锁虎, 单玉华, 朱耕如, 等 . 1996. 油菜的腋芽分化与分枝形成[J]. 中国油料,(02): 20-23, 26. (Leng S H, Shan Y H, Zhu G R, et al.1996. Axillary bud differentiation and branch formation in rape[J]. Chinese Journal of Oil Crop Sciences,(02): 20-23, 26.) [9] 罗建, 许春苗, 张国斌, 等 . 2021. 辣椒 NHX 基因家族的鉴定和表达分析[J]. 华北农学报, 36(03): 15-24. (Luo J, Xu C M, Zhang G B, et al.Bioinformation analysis and expression analysis of NHX genes family in pepper[J]. Acta Agriculturae Boreali-Sinica, 36(03): 15-24.) [10] 李国防 .2018. 苹果MAX2 基因介导独脚金内酯信号调控腋芽萌发的功能研究[D]. 博士学位论文, 西北农林科技大学, 导师: 韩明玉 . pp. 125. (Li G F.2018. Functional study of MAX2 gene on the regulation of axillary bud outgrowth by mediating strigolaction signaling in malus [D]. Thesis for M.S, Northwest A&F University, Supervisor: Han M Y. pp. 125.) [11] 王汉中, 殷艳 . 2014. 我国油料产业形势分析与发展对策建议[J]. 中国油料作物学报, 36(03): 414-421. (Wang H Z, Yin Y.2014. Analysis and strategy for oil crop industry in China[J]. Chinese Journal of Oil Crop Sciences, 36(3): 414-421.) [12] 石伟杰, 苏莹, 杜强, 等. 2021. 水稻OsURGT2 基因的克隆、表达及功能预测分析[J]. 分子植物育种: 1-19. (Shi W J, Su Y, Du Q, et al.Cloning, expression and functional prediction analysis of OsURGT2 gene in oryza sativa[J]. Molecular Plant Breeding: 1-19.) http://kns. cnki. net/kcms/detail/46.1068.S.20210604.1105.024.html. [13] 邢海彦, 唐杰松, 于耸, 等 . 2021. 蓖麻 miR396 基因家族及其靶基因 GRF 生物信息学分析及鉴定[J]. 中国油料作物学报: 1-10. (Xing H Y, Tang J S, Yu S, et al.Identification and bioinformatics of RcmiR396 gene familyand its target genes GRF in castor(Ricinus communis L.)[J]. Chinese Journal of Oil Crop Sciences: 1-10.) https:// DOI.org/10.19802/j.issn.1007-9084.2121033. [14] 杨国浪, 张晓强,徐长虹, 等 . 2020. 灰色关联度分析在西藏河谷农区甘蓝型油菜育种中的应用[J]. 种子, 39(02): 113-117. (Yang G L, Zhang X Q, Xu C H, et al.2020. Application of grey relational analysis in breeding of Brassica napus growing in rural area of tibet valley[J]. Seed, 39(02): 113-117.) [15] 张盼, 赵璇, 耿玉璐, 等 . 2020. 甘蓝型油菜-白芥渐渗系材料农艺性状和种子品质分析[J]. 植物遗传资源学报, 21(01): 63-73. (Zhang P, Zhao X, Geng Y L, et al.2020. Agronomic traits and qualitative characters analysis of Brassica napus-Sinapis alba introgression lines[J]. Journal of Plant Genetic Resources, 21(01): 63-73.) [16] 张梦云, 袁凌云, 朱世东, 等 . 2021. 十字花科植物抗氧化基因(OXR)的鉴定与生物信息学分析[J]. 分子植物育种: 1-11. (Zhang M Y, Yuan L Y, Zhu S D, et al. Genome-wide identifification and analysis of oxidation resistance genes (OXR) in cruciferae J/OL]. Molecular Plant Breeding: 1-11.) http://kns. cnki. net/kcms/detail/46.1068. S.20210825.1923.021.html. [17] 朱静雯, 郭书巧, 束红梅, 等 . 2017. 甜叶菊中新 KAH 基因的克隆及表达模式分析[J]. 生物技术通报, 33(04): 104-113. (Zhu J W, Guo S Q, Shu H M, et al.2017. Cloning and expression analysis of new KAH genes from Stevia rebaudian[J]. Biotechnology Bulletin, 33(04): 104-113.) [18] Bailey T L, Johnson J, Grant C E, et al.2015. The MEME suite[J]. Nucleic Acids Resesrch, 43(W1): W39-W49. [19] Chalhoub B, Denoeud F, Liu S, et al.2014. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome[J]. Science, 345(6199): 950-953. [20] Chou H, Zhu Y, Ma Y, et al.2016. The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca(2+ ) as a secondary cytosolic messenger[J]. Plant Journal, 85(4): 494-506. [21] Finn RD, Bateman A, Clements J, et al.2014. Pfam: The protein families database[J]. Nucleic Acids Research, 42(Database issue): D222-D230. [22] Gasteiger E, Gattiker A, Hoogland C, et al.2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Research, 31(13): 3784-3788. [23] Hu B, Jin J, Guo AY, et al.2015. GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics. 31(8): 1296-1297. [24] Kumar S, Stecher G, Tamura K.2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7): 1870-1874. [25] Lescot M, Déhais P, Thijs G.et al.2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research. 30(1): 325-327. [26] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method[J]. Methods, 25(4): 402-408. [27] Lu K, Li T, He J, et al.2018. QPrimerdb: A thermodynamics-based gene-specific qPCR primer database for 147 organisms[J]. Nucleic Acids Reseasch.46(D1): D1229-D1236. [28] McSteen P, Leyser O.2005. Shoot branching[J]. Annual Review Plant Biology, 56: 353-374. [29] Poole RL.2007. The TAIR database[J]. Methods In Molecular Biology, 406: 179-212. [30] Potter SC, Luciani A, Eddy SR, et al.2018. HMMER web server: 2018 update[J]. Nucleic Acids Research, 46(W1): W200-W204. [31] Torti S, Fornara F, Vincent C, et al.2012. Analysis of the Ara‐bidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering[J]. Plant Cell, 24(2): 444-462. [32] Wahl V, Brand L H, Guo Y L, et al.2010. The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana[J]. BMC Plant Biology, 10: 285. [33] Wang B, Smith SM, Li J.2018. Genetic regulation of shoot architecture[J]. Annual Review Plant Biology, 69: 437-468. Wang C, Yang X, Li G. 2021. Molecular insights into inflorescence meristem specification for yield potential in cere‐al crops[J]. International Journal Of Molecular Sciences, 22(7): 3508. [34] Wang X, Wu J, Liang J, et al.2015. Brassica database(BRAD) version 2.0: Integrating and mining Brassicaceae species genomic resources[J]. Database (Oxford), 2015: bav093. [35] Wang Y, Tang H, Debarry JD, et al.2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research. 40(7): e49. [36] Waterhouse A, Bertoni M, Bienert S, et al.2018. SWISS-MODEL: Homology modelling of protein structures and complexes[J]. Nucleic Acids Research. 46(W1): W296-W303. |
|
|
|