|
|
Efficacies of Different Soil Fumigants Against Fusarium spp. of Lettuce (Lactuca sativa) Planting Soil and Their Influences on Soil Microbial Community |
CHEN Li-Da1,*, SHI Yan-Xia1,*, LI Lei1, CHAI A-Li1, GUO Ning2, FAN Teng-Fei1, XIE Xue-Wen1,**, LI Bao-Ju1,** |
1 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Beijing Soil and Fertilizer Workstation, Beijing 100029, China |
|
|
Abstract With the continuous cultivation of high value-added vegetable crops in facility greenhouses, the problem of soil-borne diseases has gradually become prominent, and fumigants have also been more widely used. However, based on the broad spectrum of fumigants, while killing harmful organisms, it will inevitably have a certain impact on non-target organisms. In this experiment, qPCR technology, selective medium separation and counting methods were used to study the inhibitory effect of Dazomet, Calcium cyanamide and Metam sodium in lettuce (Lactuca sativa) planting soil on Fusarium and the influence of soil microbial community. During the harvest of lettuce, the agronomic traits and yield of the plant were measured, and the correlation analysis of the interaction between fumigant and soil microorganisms was carried out based on the physical and chemical properties of the soil. The results showed that the DNA content of Fusarium was 3.29×109, 2.85×109, and 5.85×109 copies/g before the treatment of Dazomet, Calcium cyanamide and Metam sodium, respectively, and the DNA content of Fusarium decreased to 1.72×109, 2.17×109 and 5.25×109 copies/g at 0 d after fumigation and unmasking. The number of microorganisms in the 3 fumigant treatments was significantly reduced at 0 d after the film was uncovered, and the number of actinomycetes recovered and was higher than the initial level after 60 d after the film was uncovered in the Calcium cyanamide treatment. The control effects of Dazomet, Calcium cyanamide and Metam sodium on the root rot of lettuce were 78.90%, 62.55% and 48.64%, respectively. The yield weights of Dazomet, Calcium cyanamide and Metam sodium after treatment were 0.72, 0.70 and 0.70 kg, respectively. Compared with CK, the yield increase rate of the lettuce in Dazomet treatment was 60.00%, and the growth promotion rate was more than 16%, followed by Calcium cyanamide and Metam sodium treatment. The pH before treatment with Calcium cyanamide and Dazomet was 6.89 and 6.88, respectively, and increased to 7.12 and 6.98 after 60 d of uncovering the film. The initial soil electrical conductivity of Dazomet, Calcium cyanamide and Metam sodium were 284.50, 324.00, and 330.00 μs/cm, respectively, and decreased by 22.38%, 13.88%, and 37.18%, respectively, after 60 d of uncovering the film. Therefore, the 3 fumigant treatments can inhibit Fusarium to varying degrees, increase the agronomic characteristics and yield of lettuce, restore the number of microorganisms in the later stage, and will not significantly disturb the soil microbial community, which was safe for the environment. This research lays a technical support for the restoration and reconstruction technology of lettuce planting soil micro-ecological.
|
Received: 19 March 2021
|
|
Corresponding Authors:
**xiexuewen@caas.cn; libaoju@caas.cn
|
About author:: * These authors contributed equally to this work |
|
|
|
[1] 鲍士旦. 2007. 土壤农化分析[M]. 北京:中国农业出版社. (Bao S D.2007. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press, China) [2] 卜东欣, 张超, 李伟, 等. 2014a. 威百亩对西葫芦常见土传病原菌的毒力及田间防效[J]. 植物保护学报, 41(5): 562-568. (Bu D X, Zhang C, Li W, et al.2014. Toxicity and field efficacy of metham-sodium against common soil-borne pathogens of summer squash[J]. Acta Phytophylacica Sinica, 41(5): 562-568.) [3] 卜东欣, 张超, 张鑫, 等. 2014b. 熏蒸剂威百亩对土壤微生物数量和酶活性的影响[J]. 中国农学通报, 30(15): 227-233. (Bu D X, Zhang C, Zhang X, et al.2014. Effects of fumigant metham-sodium on soil microbial population and enzyme activities[J]. Chinese Agricultural Science Bulletin, 30(15): 227-233.) [4] 曹坳程, 刘晓漫, 郭美霞等. 2017. 作物土传病害的危害及防治技术[J]. 植物保护, 43(2): 6-16. (Cao A C, Liu X M, Guo M X, et al.2017. Incidences of soil-borne diseases and control measures[J]. Plant Protection, 43(2): 6-16.) [5] 陈利达, 袁军海, 李磊, 等. 2019. 镰孢菌属实时荧光定量PCR检测方法的建立及应用[J]. 华北农学报, 34(S1):296-301. (Chen L D, Yuan J H, Li L, et al.2019. Development and application of quantitative PCR for detection of Fusarium[J]. Acta Agriculturae Boreali-Sinica. 34(S1): 296-301.) [6] 陈利达, 石延霞, 李磊, 等. 2021. 氰氨化钙与秸秆还田协同处理对生菜土传病害防效及土壤质量的影响[J/OL]. 植物病理学报, 1-13. (Chen L D, Shi Y X, Li L, et al.2021. Effect of calcium cyanamide and straw returning cooperative treatment on the control of lettuce soil-borne diseases and soil quality[J/OL]. Acta Phytopathologica Sinica. 1-13) [7] 陈云峰, 曹志平, 于永莉. 2007. 甲基溴替代技术对番茄室温土壤养分及微生物量碳的影响[J].中国生态农业学报, 15(5): 42-45. (Chen Y F, Cao Z P, Yu Y L, et al.2007. Impact of alternative methyl bromide technology on soil nutrient and microbial biomass carbon in tomato greenhouse[J]. Chinese Journal of Eco-Agriculture. 15(5): 42-45.) [8] 程新胜, 杨建卿. 2007. 熏蒸处理对土壤微生物及硝化作用的影响[J]. 中国生态农业学报, 15(6): 51-53. (Cheng X S, Yang J Q.2007. Effect of soil fumigation on soil microbe and nitrification[J]. Chinese Journal of Eco-Agriculture. 15(6): 51-53.) [9] 范琳娟, 刘奇志, 宋兆欣, 等. 2017. 温室重茬草莓土壤施用棉隆和氯化苦效果评价[J]. 农药, 56(4): 293-296. (Fan L J, Liu Q Z, Song Z X, et al.2017. Evaluation of dazomet and chloropicrin effectiveness on replanted soil in greenhouse strawberry[J]. Agrochemicals, 56(4): 293-296.) [10] 方文生, 曹坳程, 韩大伟, 等. 2016. 两种熏蒸剂对土传病害的防控效果及黄瓜产量的影响[J]. 中国蔬菜, (7): 44-48. (Fang W S, Cao A C, Han D W, et al. 2016. Studies on effect of two fumigants on cucumber main soil borne diseases and cucumber yield[J]. China Vegetables, (7): 44-48.) [11] 胡庆发, 马军伟, 符建荣, 等. 2013. 多功能药肥对茄子黄萎病的防治效果及茄子产量品质的影响[J]. 浙江农业学报, 25(2): 315-318. (Hu Q F, Ma J W, Fu J R, et al.2013. Effects of multifunctional medicinal-fertilizer on the control of Verticillium wilt and yield and quality of eggplant production[J]. Acta Agriculturae Zhejiangensis, 25(2): 315-318.) [12] 黄国锋, 刘翔, 王有宁. 2018. 石灰氮对设施番茄根际土壤微生物数量的影响研究[J]. 湖北工程学院学报, 174(3): 26-30. (Huang G F, Liu X, Wang Y N.2018. Effects of lime nitrogen on the amount of microorganisms in the rhizosphere soil of tomato in greenhouse[J]. Journal of Hubei Engineering University, 174(3): 26-30.) [13] 刘恩太, 李园园, 胡艳丽, 等. 2014. 棉隆对苹果连作土壤微生物及平邑甜茶幼苗生长的影响[J]. 生态学报, 34(4): 847-852. (Liu E T, Li Y Y, Hu Y L, et al.2014. Effects of dazomet on edaphon and growth of Malus hupehensis rehd.under continuous apple cropping[J]. Acta Ecologica Sinica, 34(4): 847-852.) [14] 刘超, 相立, 王森, 等. 2016. 土壤熏蒸剂棉隆加海藻菌肥对苹果连作土微生物及平邑甜茶生长的影响[J]. 园艺学报, 43(10): 1995-2002. (Liu C, Xiang L, Wang S, et al.2016. Effects of dazomet fumigation and seaweed biologic fertilizer on the Malus hupehensis seedlings and soil microbial quantity under replant conditions[J]. Acta Horticulturae Sinica, 43(10): 1995-2002.) [15] 乔雄梧, 王静, 秦曙, 等. 1999. 4种农药对土壤微生物的影响Ⅱ: 氮素矿质化的变化[J]. 应用与环境生物学报, 5(l):158-161. (Qiao X W, Wang J, Qin S, et al.1999. Effects of four pesticides on soil microorganisms Ⅱ: Changes in nitrogen mineralization[J]. Journal of Applied and Environmental Biology, 5(l): 158-161.) [16] 王方艳, 王秋霞, 颜冬冬, 等. 2011. 二甲基二硫熏蒸对保护地连作土壤微生物群落的影响[J]. 中国生态农业学报, 19(4): 890-896. (Wang F Y, Wang Q X,Yan D D, et al.2011. Effects of dimethyl disulfide on microbial communities in protectorate soils under continuous cropping[J]. Chinese Journal of Eco-Agriculture, 19(4): 890-896.) [17] 王会芳, 王三勇, 符美英, 等. 2014. 棉隆对番茄根结线虫病的防治效果[J]. 热带生物学报, 5(3): 249-252. (Wang H F, Wang S Y, Fu M Y, et al.2014. Effect of chemical dazomet on controlling of tomato root-knot nematodes[J]. Journal of Tropical Biology, 5(3): 249-252.) [18] 王秋霞, 颜冬冬, 王献礼, 等. 2017. 土壤熏蒸剂研究进展[J]. 植物保护学报, 2017, 44(4): 529-543. (Wang Q X, Yan D D, Wang X L, et al.2017. Research advances in soil fumigants[J]. Acta Phytophylacica Sinica, 44(4): 529-543.) [19] 杨向黎, 岳凤荣, 陈燕, 等. 2016. 土壤消毒与土壤活化技术在保护地草莓中的应用[J]. 湖北农业科学, 55(14): 3654-3657. (Yang X L, Yue F R, Chen Y, et al.2016. Application of soil disinfection and soil activation technology in protected cultivation of strawberry[J]. Hubei Agricultural Sciences, 55(14): 3654-3657.) [20] 于庆涛, 姚廷山. 2018. 烟草镰孢菌根腐病研究进展[J]. 安徽农业科学, 46(17): 34-36. ( Yu Q T, Yao T S.2018. Advances in tobacco root rot caused by Fusarium[J]. Anhui Agricultural Sciences, 46(17): 34-36.) [21] 袁根兰. 2018.不同土壤消毒方式对大棚西瓜连作障碍缓解效果的研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 张显, pp. 19. (Yuan G L.2018. Effects of different soil disinfection methods on the alleviation of watermelon continuous cropping obstacles in greenhouse[D]. Thesis for M.S., Northwest A&F University, Supervisor: Zhang X, pp. 19.) [22] 运翠霞, 严昌荣, 徐明泽, 等. 2020. 不同消毒方式对土壤酶活性及土传病原真菌消减的影响[J]. 中国农业大学学报, 25(12): 86-96. (Yun C X, Yan C R, Xu M Z, et al.2020. Effects of different soil disinfection methods on soil enzyme activities and soil-borne diseases[J]. Journal of China Agricultural University, 25(12): 86-96.) [23] 张超, 卜东欣, 张鑫, 等. 2015. 棉隆对辣椒疫霉病的防效及对土壤微生物群落的影响[J]. 植物保护学报, 42(5): 843-840. (Zhang C, Bu D X, Zhang X, et al.2015. Effects of dazomet on phytophthora capsici and microbial communities in the field trials[J]. Acta Phytophylacica Sinica, 42(5): 843-840.) [24] 张凯. 2015. 温室农业土壤特性的调查与评价[D]. 硕士学位论文, 河南科技大学, 导师: 石兆勇, 张伟, pp. 33-34. (Zhang K.2015. Investigation and evaluation of greenhouse agricultural soil characteristics[D]. Thesis for M.S., Henan University of Science and Technology, Supervisor: Shi Z Y, Zhang W, pp. 33-34.) [25] 张学鹏, 宁堂原, 杨燕, 等. 2015. 不同浓度石灰氮对黄瓜连作土壤微生物生物量及酶活性的影响[J]. 应用生态学报, 10:164-173. (Zhang X P, Ning T Y, Yang Y, et al.2015. Effects of different application rates of calcium cyanamide on soil microbial biomass and enzyme activity in cucumber continuous cropping[J]. Journal of Applied Ecology, 10: 164-173.) [26] 张屹, 肖姬玲, 向吉方, 等. 2017. 不同熏蒸处理与生物有机肥联用对西瓜枯萎病的防控效果[J]. 湖南农业科学, 8: 53-56. (Zhang Y, Xiao J L, Xiang J F, et al.2017. Control Effect of different soil fumigants and bio-Organic fertilizer on watermelon Fusarium wilt by continuously cropping[J]. Hunan Agricultural Sciences, 8:53-56.) [27] 赵鹏宇, 燕平梅, 赵晓东, 等. 2021. 威百亩熏蒸后土壤微生物群落重建及功能恢复[J].植物保护, 47(03): 44-53. (Zhao P Y, Yan P M, Zhao X D, et al.2021. Reconstruction and functional recovery of Soil microbial community after fumigation of metam-sodium[J]. Plant Protection, 47(03): 44-53.) [28] Abou Zeid N M, Noher A M.2014. Efficacy of DMDS as methyl bromide alternative in controlling soil borne diseases, root-knot nematode and weeds on pepper, cucumber and tomato in Egypt[J]. Acta Horticulturae, 1044: 411-414. [29] Benyephet Y, Melerovera J M, Devay J E.1988. Interaction of soil solarization and metham-sodium in the destruction of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum[J]. Crop Protection, 7(5): 327-331. [30] Bletsos F A .2006. Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouse eggplant production[J]. Scientia Horticulturae, 107(4): 0-331. [31] Bletsos F A.2005. Use of grafting and calcium cyanamide as alternatives to methyl bromide soil fumigation and their effects on growth, yield, quality and Fusarium wilt control in melon[J]. Phytopathology, 153(3): 155-161. [32] Gilreath J P, Santos B M.2004. Herbicide dose and incorporation depth in combination with 1,3-dichloropropene plus chloropicrin for Cyperus rotundus control in tomato and pepper[J]. Crop Protection, 23: 205-210. [33] Hanson B D, Gao S, Gerik J S, et al.2011. Effects of emission reduction surface seal treatments on pest control with shank-injected 1, 3-dichloropropene and chloropicrin[J]. Crop Protection, (30): 203-207. [34] Klose S, Acosta-Martínez V, Ajwa H A.2006. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides[J]. Soil Biology and Biochemistry, (38): 1243-1254. [35] Klose S, Ajwa H A, Fennimore S A.2007. Dose response of weed seeds and soilborne pathogens to 1,3-D and chloropicrin[J]. Crop Protection, (26): 535-542. [36] Li J, Huang B, Wang Q X, et al.2017. Effects of fumigation with metam-sodium on soil microbial biomass, respiration, nitrogen transformation, bacterial community diversity and genes encoding key enzymes involved in nitrogen cycling[J]. Science of the Total Environment, 598: 1027-1036. [37] Mao L G, Wang Q X, Yan D D, et al.2014. Evaluation of chloropicrin as a soil fumigant against ralstonia solanacarum in ginger (Zingiber officinale Rosc.) production in China[J]. PLOS ONE, 9(3): e91767. [38] Parthipan B, Mahadevan A.1995. Effects of methylisocyanate on soil microflora and the biochemical activity of soils[J]. Environmental Pollution, 87(3): 283-287. [39] Prather M J, Watson R T.1990. Stratospheric ozone depletion and future levels of atmospheric chlorine and bromine[J]. Nature, 344(6268): 729-734. [40] Stromberger M E, Klose S, Ajwa H, et al.2005. Microbial populations and enzyme activities in soils fumigated with methyl bromide alternatives[J]. Soil Science Society of America Journal, 69(6): 1987-1999. [41] Tan Y, Cui Y S, Li H Y, et al.2017. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous panax notoginseng cropping practices[J]. Microbiological Research, 194: 10-19. [42] Wang Q J, Ma Y, Yang H, et al.2014. Effect of biofumigation and chemical fumigation on soil microbial community structure and control of pepper phytophthora blight[J]. World Journal of Microbiology and Biotechnology, 30(2): 507-518. [43] Yim B, Smalla K, Winkelmann T.2013. Evaluation of apple replant problems based on different soil disinfection treatments-links to soil microbial community structure?[J]. Plant and Soil, 366(1-2): 617-631. |
|
|
|