|
|
Isolation, Identification and Selenium Tolerance Assay of Endophytic Microbes from Selenium Hyperaccumulator Cardamine violifolia |
GENG Zhi1,2, WANG Li-Ping2, FENG Yu-Qi2, SUN Yan-Mei2, WANG Shi-Wei2,*, SHEN Li-Xin2 |
1 School of Medicine, Shaanxi Institute of International Trade Commerce, Xi'an 712046, China; 2 School of Life Science, Northwest University, Xi'an 710069, China |
|
|
Abstract Cardamine violifolia is a selenium hyperaccumulator, which was discovered to be medicinal and edible by Chinese scientists. It can convert inorganic selenium into selenocysteine and accumulate selenium in plant. Microorganisms can transform selenium forms, and this transformation may be beneficial to selenium enrichment in C. violifolia. However, there are few studies on the endophytes of C. violifolia. In this work, the endophytes from C. violifolia were isolated and identified, and the selenium resistance was investigated. Finally, 6 endophytic bacteria were purified from C. violifolia and 4 strains were capable of producing nano-selenium by metabolizing 0.01 mol/L sodium selenite. Enterobacter sp. SX-18 was identified to be resistant to a concentration of up to 0.20 mol/L sodium selenite, and was able to transform 46.96% of 0.02 mol/L sodium selenite into nano-selenium in 24 h. A total of 5 endophytic fungi were isolated and identified. All of them displayed the ability to metabolize 0.01 mol/L sodium selenite, and Colletotrichum sp. SZ-5 was identified to be resistant to 0.16 mol/L sodium selenite and was able to transform 19.34% of 0.02 mol/L sodium selenite into nano-selenium in 48 h. The present study provides more endophytic microbial resources for investigating the interaction between plants and microorganisms and biological remediation of selenium contamination aera.
|
Received: 05 January 2021
|
|
Corresponding Authors:
* wangsw@nwu.edu.cn
|
|
|
|
[1] 东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, pp. 62-65. (Dong X Z, Cai M Y.2001. Common Bacterial System Identification Manual[M]. Science Press, Beijing, China, pp. 62-65.) [2] 李卫东, 万海英, 朱云芳, 等. 2017. 恩施州天然硒资源特征及其开发利用研究进展[J]. 生物技术进展, 7(5): 545-550. (Li W D, Wan H Y, Zhu Y F, et al.2017. Progress on utilization and characteristic of natural selenium resources in Enshi autonomous prefecture[J]. Current Biotechnology, 7(5): 545-550.) [3] 李亚杰, 向极钎, 殷红清, 等. 2020. 堇叶碎米荠食用安全性调查研究[J]. 安徽农业科学, 48(8): 155-157, 168. (Li Y J, Xiang J Q, Yin H Q, et al.2020. Research on the edible safety of Cardamine violifolia[J]. Journal of Anhui Agricultural Sciences, 48(8): 155-157, 168.) [4] 米秀博, 邵树勋, 汤鋆, 等. 2014. 湖北恩施地区天然富硒植物中硒形态的HPLC-ICP-MS分析[J]. 草业科学, 31(6): 1173-1177. (Mi X B, Shao S X, Tang J, et al.2014. Identification and characterization of selenium species in Se-enriched plants by HPLC-ICP-MS in Enshi[J]. Pratacultural Science, 31(6): 1173-1177.) [5] 彭祚全, 黄剑锋. 2012. 世界硒都恩施硒资源研究概述[M]. 清华大学出版社, pp. 118-119. (Peng Z Q, Huang J F.2012. Overview of Research on Selenium Resources in Enshi[M]. Tsinghua University Press, Beijing, China, pp. 118-119.) [6] 魏景超. 1979. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, pp. 463-468. (Wei J C.1979. Fungus Identification Manual[M]. Shanghai Science and Technology Press, Shanghai, China, pp. 463-468.) [7] 王智伟, 周小敏, 杨雨鑫, 等. 2018. 黑胸散白蚁体内产纤维素酶细菌的筛选及其纤维素酶基因的鉴定与原核表达[J]. 农业生物技术学报, 26(8): 1275-1287. (Wang Z W, Zhou X M, Yang Y X, et al.2018. Screening of cellulolytic microorganisms from the Reticulitermes chinensis and identification of cellulase gene and its prokaryotic expression[J].Journal of Agricultural Biotechnology, 26(8): 1275-1287.) [8] 邢小萍, 张盼盼, 丁胜利, 等. 2017. 根癌土壤杆菌介导的假禾谷镰刀菌遗传转化体系的优化[J]. 农业生物技术学报, 25(11): 1887-1894. (Xing X P, Zhang P P, Ding S L, et al.2017. Optimizing of Agrobacterium tumefaciens-mediated genetic transformation sytem in Fusarium pseudograminearum[J]. Journal of Agricultural Biotechnology, 25(11): 1887-1894.) [9] 张如, 樊霆, 李淼, 等. 2018. 一株耐硒壶瓶碎米荠内生菌分离、鉴定及其体外硒代谢研究[J]. 微生物学通报, 45(2): 314-321. (Zhang R, Fan T, Li M, et al.2018. Isolation, identification and selenite metabolism of a selenium-tolerant endophyte from Cardamine hupingshanensis[J]. Microbiology China, 45(2): 314-321.) [10] 张春燕, 唐巧玉, 周毅峰. 2019. 壶瓶碎米荠粗黄酮产品抗氧化研究[J]. 中国粮油学报, 34(11): 57-63. (Zhang C Y, Tang Q Y, Zhou Y F.2019. Antioxidant activity of crude flavonoids from Cardamine Hupingshanensis[J]. Journal of the Chinese Cereals and Oils Association, 34(11): 57-63.) [11] Adrianne B.2000. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids Institute of Medicine Washington, DC[M]. National Academy Press, pp. 528. [12] Alford E R, Lindlbom S D, Pittarello M, et al.2014. Roles of rhizobial symbionts in selenium hyperaccumulation in Astrgalus (Fabaceae)[J].American Journal of Botany, 101(11): 1895-1905. [13] Bajaj M, Eiche E, Neumann T, et al.2011. Hazardous concentrations of selenium in soil and groundwater in north-west India[J]. Journal of Hazardous Materials, 189(1): 640-646. [14] Dubey A, Malla M A, Kumar A, et al.2020. Plants endophytes: Unveiling hidden agenda for bioprospecting toward sustainable agriculture[J]. Critical Reviews in Biotechnology, 40(8): 1210-1231. [15] Dorsch M, Lane D, Stackebrandt E.1992. Towards a phylogeny of the genus vibrio based on 16S rRNA sequences[J]. International Journal of Systematic Bacteriology, 42(1): 58-63. [16] Fleming A G.1962. Selenium in Irish soil and plants[J]. Soil Science, 94(1): 28-35. [17] Kessi J, Ramuz M, Wehrli E, et al.1999. Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum[J]. Applied and Environmental Microbiology, 65(11): 4734-4740. [18] Martina S J, Ray J B R, Klara R, et al.2015. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties[J]. Frontiers in Plant Science, 6(11): 113. [19] Rashmi R M, Sunita P, Jyotirmayee D, et al.2011. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product[J].Journal of Chemosphere, 84(9): 1231-1237. [20] Stierle A, Strobel G, Stierle D.1993. Taxol and taxane production by taxomyces and reanae, an endophytic fungus of pacific yew[J]. Science, 260(9): 214-216. [21] Staicu L C, Ackerson C J, Cornelis P, et al.2015. Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions[J]. Journal of Applied Microbiology, 119(2): 400-410. [22] Stormy D L, Ami L W, Jose R V, et al.2018. Fungal endophyte alternaria tenuissima can affect growth and selenium accumulation in its hyperaccumulator host Astragalus bisulcatus[J].Frontiers in Plant Science, 9(11): 1213. [23] Sweety A W, Utkarsha U S, Richa S, et al.2016. Biogenic selenium nanoparticles: Current status and future prospects[J]. Applied Microbiology and Biotechnology, 100(6): 2555-2566. [24] Terry N, Zayed A M, Souza de M P, et al.2000. Selenium in higher plants[J]. Plant Molecular Biology, 51(1): 401-432. [25] Trelease S F, Beath O A.1951. Selenium, its geological occurrence and its biological effects in relation to botany, chemistry, agriculture, nutrition, and medicine[J]. Journal of Geology, 59(2): 184. [26] Tong X Z, Yuan L X, Luo L, et al.2014. Characterization of a selenium-tolerant rhizosphere strain from a novel Se-hyperaccumulating plant Cardamine hupingshanesis[J].The Scientific World Journal, 2014: 108562. [27] Xu X, Cheng W, Liu X, et al.2020. Selenate reduction and selenium enrichment of tea by the endophytic Herbaspirillum sp. strain WT00C[J]. Current Microbiology, 77(49): 588-601. [28] Yuan Y Q, Zhu J M, Liu C Q, et al.2015. Biomineralization of Se nanoshpere by Bacillus licheniformis[J]. Journal of Earth Science, 26(2): 246-250. |
|
|
|