|
|
Construction of GFP-labeled Transformant of Hypovirulent Strain FC136-2A in Fusarium pseudograminearum |
WANG Zhi-Fang1, LI Ke1, LIU Dong-Wei1, XIE Yuan1, DAI Jun-Li1, WANG Ke1, GAO Fei1, ZHANG Xiao-Ting1,*, LI Hong-Lian1,2,* |
1 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; 2 National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China |
|
|
Abstract Wheat crown rot is an important soil-borne disease occurring widely in most wheat (Triticum aestivum) growing areas in the world. Fusarium pseudograminearum is the dominant causal agent of wheat crown rot. In F. pseudograminearum strain FC136-2A, mycovirus Fusarium pseudograminearum megabirnavirus 1 (FpgMBV1) was found to cause the hypovirulence of FC136-2A on wheat. To explore the mechanism of hypovirulence caused by FpgMBV1, a pCAM-GFP-hyg construct was transformed into F. pseudograminearum strain FC136-2A by Agrobacterium tumefaciens-mediated genetic transformation technology. Molecular identification, fluorescent observation, biological characterization and pathogenicity test of the transformants were also conducted. Results showed that the GFP-labeled transformant FC136-2A-GFP had no biological differences compared to FC136-2A in growth rate and sporulation capacity. Besides, FpgMBV1 was still in the transformant FC136-2A-GFP and the pathogenicity of FC136-2A-GFP was low on wheat. The present study obtained GFP-labeled transformant FC136-2A-GFP of F. pseudograminearum, which could be used to observe the infection and pathogenic process of hypovirulence strain FC136-2A on wheat, and provide basic information for further study on the mechanism of hypovirulence effect of mycovirus FpgMBV1 on F. pseudograminearum.
|
Received: 04 November 2020
|
|
Corresponding Authors:
*zhangxiaoting921@163.com;honglianli@sina.com
|
|
|
|
[1] 蔡琪敏.2012.红色红曲霉T-DNA插入突变库的构建及GABA代谢相关基因的克隆[D].硕士学位论文,浙江师范大学,导师: 蒋冬花, pp.24-28. (Cai Q M.2012.Construction of T-DNA insertional library of Monascus ruber and cloning of γ-amino-butyric acid metabolism-related genes[D].Thesis for M.S., Zhejiang Normal University, Supervisor: Jiang D H, pp.24-28.) [2] 曹张磊, 王德培, 张岚.2016.提高根癌农杆菌介导黑曲霉转化效率的研究[J].天津科技大学学报, 31(02): 20-25. (Cao Z L, Wang D P, Zhang L.2016.Improvement of transformation efficiency of Aspergillus niger mediated by Agrobacterium tumefaciens[J].Journal of Tianjing University of Science & Technology, 31(02): 20-25.) [3] 冯泽庆.2018.根癌农杆菌介导尖孢镰刀菌T-DNA插入突变的研究[D].硕士学位论文, 吉林大学, 导师: 王丽, pp.34-30. (Feng Z Q.2018.Analysis of Fusarium oxysporum based on the Agrobacterium tumefaciens-mediated T-DNA in insertional mutagenesis[D].Thesis for M.S., Jilin University, Supervisor: Wang L, pp.34-30.) [4] 何丽云, 张树林, 崔百元, 等.2019.根癌农杆菌介导的遗传转化及其在稻瘟病菌中的应用[J].广东农业科学, 46(3): 93-100. (He L Y, Zhang S L, Cui B Y, et al.2019.Application of Agrobacterium tumefaciens-mediated transformation in Magnaporthe oryzae[J].Guangdong Agricultural Sciences, 46(3): 93-100.) [5] 刘忱, 张美玲, 舒灿伟, 等.2016.真菌病毒的研究进展[J].中国植保导刊, 36(09): 18-27. (Liu C, Zhang M L, Shu C W, et al.2016.Research progress on Mycovirus[J].China Plant Protection, 36(09): 18-27.) [6] 刘丽媛, 朱立华, 刘力伟, 等.2017.层出镰刀菌T-DNA插入突变体库的构建与分析[J].河北农业大学学报, 40(1): 71-75. (Liu L Y, Zhu L H, Liu L W, et al.2017.Construction and analysis of the T-DNA insertional mutant library for Fusarium proliferatum[J].Journal of Hebei Agricultural University, 40(1): 71-75.) [7] 孙华, 马红霞, 丁梦军, 等.2019.拟轮枝镰孢ATMT突变体库的构建及分析[J].中国农业科学, 52(8): 1380-1388. (Sun H, Ma H X, Ding M J, et al.2019.Construction and evaluation of ATMT mutant library of Fusarium verticillioides[J].Scientia Agricultura Sinica, 52(8): 1380-1388.) [8] 吴斌, 郭霞, 张眉, 等.2018.鲁西南地区小麦茎基腐病病原菌鉴定及其致病力分析[J].麦类作物学报, 38(3): 358-365. (Wu B, Guo X, Zhang M, et al.2018.Identification and pathogenicity of pathogens associated with the wheat crown rot in the Southwest of Shandong Province[J].Journal of Triticeae Crops, 38(3): 358-365.) [9] 邢小萍, 张盼盼, 丁胜利, 等.2017.根癌土壤杆菌介导的假禾谷镰刀菌遗传转化体系的优化[J].农业生物技术学报, 25(11): 1887-1894. (Xing X P, Zhang P P, Ding S L, et al.2017.Optimizing of Agrobacterium tumefaciens- mediated genetic transformation system in Fusarium pseudograminearum[J].Journal of Agricultural Biotechnology, 25(11): 1887-1894.) [10] 徐飞, 宋玉立, 周益林, 等.2016.2013-2016年河南省小麦茎基腐病的发生危害情况及特点[J].植物保护, 42(6): 126-132. (Xu F, Song Y L, Zhou Y L, et al.2016.Occurrence dynamics and characteristics of Fusarium root and crown rot of wheat in Henan Province during 2013-2016[J].Plant Protection, 42(6): 126-132.) [11] 徐后娟, 徐荣燕, 李多川.2009.链格孢ATMT转化体系的构建及弱毒突变株验证[J].基因组学与应用生物学, 28(06): 1056-1062. (Xu H J, Xu R Y, Li D C.2009.Agrobacterium tumefaciens-mediated transformation of Alternaria alternata and identification of hypovirulent mutant[J].Genomics and Applied Biology, 28(06): 1056-1062.) [12] 杨显芳, 李吉民, 刘清瑞, 等.2020.小麦茎基腐病的危害趋势与综合防治[J].种业导刊, (03): 29-31. (Yang X F, Li J M, Liu Q R, et al.2020.Harmfulness trend and comprehensive control measures of wheat crown rot[J].Journal of Seed Industry Guide, (03): 29-31.) [13] 杨新.2017.真菌gfp表达载体构建及农杆菌介导转化胶孢炭疽菌研究[D].硕士学位论文, 山东农业大学, 导师: 杨克强, pp.17-22. (Yang X.2017.Construction of gfp expression vector for fungus and Agrobacterium tumefaciens-mediated transformation of Colletotrichum gloeosporioides[D].Thesis for M.S., Shandong Agricultural University, Supervisor: Yang K Q, pp.17-22.) [14] 杨云, 贺小伦, 胡艳峰, 等.2015.黄淮麦区主推小麦品种对假禾谷镰刀菌所致茎基腐病的抗性[J].麦类作物学报, 35(3): 339-345. (Yang Y, He X L, Hu Y F, et al.2015.Resistance of wheat cultivars in Huang-Huai region of China to crown rot caused by Fusarium pseudograminearum[J].Journal of Triticeae Crops, 35(3): 339-345. [15] 张俊华, 刘烨, 韩雨桐, 等.2014.农杆菌介导稻瘟病菌绿色荧光蛋白(GFP)遗传转化研究[J].东北农业大学学报, (11): 1-7. (Zhang J H, Liu Y, Han Y T, et al.2014.GFP genetic transformation of Magnaporthe grisea mediated by Agrobacterium tumefaciens[J].Journal of Northeast Agricultural University, (11): 1-7.) [16] 赵培宝, 周庆新, 任爱芝, 等.2008.根癌农杆菌介导的轮枝镰孢菌遗传转化及T-DNA插入突变体的筛选[J].菌物学报, 27(2): 258-266. (Zhao P B, Zhou Q X, Ren A Z, et al.2008.Agrobacterium tumefaciens-mediated transformation of Fusarium verticillioides and T-DNA insertional mutagenesis of the fungus[J].Mycosystema, 27(2): 258-266.) [17] 周海峰, 杨云, 牛亚娟, 等.2014.小麦茎基腐病的发生动态与防治技术[J].河南农业科学, 43(05): 114-117. (Zhou H F, Yang Y, Niu Y J, et al.2014.Occurrence and control methods of crown rot of wheat[J].Journal of Henan Agricultural Sciences, 43(05): 114-117.) [18] Burgess L W, Wearing A H, Toussoun T A.1975.Surveys of Fusaria associated with crown rot of wheat in Eastern Australia[J].Australian Journal of Agricultural Research, 26(5):791-799. [19] Chakraborty S, Liu C J, Mitter V, et al.2006.Pathogen population structure and epidemiology are a key to wheat crown rot and Fusarium head blight management[J].Australian Plant Pathology, 35: 643-655. [20] de Groot M J, Bundock P, Hooykaas P J, et al.1998. Agrobacterium-mediated transformation of filamentous fungi[J].Nature Biotechnology, 16(9): 839-842. [21] Jansen C, von Wettstein D, Schafer W, et al.2005.Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum[J].Proceedings of the National Academy of Sciences of the USA, 102(46): 16892-16897. [22] Li H L, Yuan H X, Fu B, et al.2012.First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China[J].Plant Disease, 7(7): 1065-1065. [23] Pedro R, Caroline G, Alex L, et al.2020.Hypovirulent effect of the Cryphonectria hypovirus 1 in British isolates of Cryphonectria parasitica[J].Pest Management Science, 76(4): 1333-1343. [24] Ramos B, López G, Molina A.2016.Development of a Fusarium oxysporum f.sp.melonis functional GFP fluorescence tool to assist melon resistance breeding programs[J].Plant Pathology, 64(6): 1349-1357. [25] Shao C, Yin Y, Qi Z, et al.2015.Agrobacterium tumefaciens-mediated transformation of the entomopathogenic fungus Nomuraea rileyi[J].Fungal Genetics & Biology, 83: 19-25. [26] Smiley R W, Patterson L M.1996.Pathogenic fungi associated with Fusarium foot rot of winter wheat in the semiarid Pacific Northwest[J].Plant Disease, 80(8): 944-949. [27] Spelling T, Bottin A, Kahmann R.1996.Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis[J].Molecular Genetics and Genomics, 252(5): 503-509. [28] Stephanie, Widyastuti U, Wiyono S.2015.Introduction of the serine green fluorescent protein (sgfp) gene into Pyricularia grisea race dc4 isolated from Digitaria ciliaris using Agrobacterium tumefaciens-mediated genetic transformation[J].Biotropia, 22(1): 73-79. [29] van Wyk P S, Los O, Pauer G D, et al.1987.Geographic distribution and pathogenicity of Fusarium species associated with crown rot of wheat in the Orange Free State, South Africa[J].Phytophylactica, 19(3): 271-274. [30] Zhang X T, Gao F, Zhang F, et al.2018.The complete genomic sequence of a novel megabirnavirus from Fusarium pseudograminearum, the causal agent of wheat crown rot[J].Archives of Virology, 163(11): 3173-3175. [31] Zhou H F, He X L, Wang S, et al.2019.Diversity of the Fusarium pathogens associated with crown rot in the Huanghuai wheat-growing region of China[J].Environmental Microbiology, 21(8): 2740-2754. |
[1] |
LIU Guo-Xia, TAN Qing-Qing, QI Jun-Shan, WANG Fu-Yu, CHEN Xue-Yan, FAN Yang-Yang, HU Yue, BU Xun, ZHANG Quan-Fang. Rapid Identification of Main Pathogen Fusarium pseudograminearum of Wheat Crown Rot Using Site-specific PCR Based on EF-1α Sequence[J]. 农业生物技术学报, 2021, 29(5): 985-994. |
|
|
|
|