|
|
Characterization and Phylogenetic Evolution of Mitochondrial Genome in Tibetan Chicken (Gallus gallus domesticus) |
JIA Xiao-Xu, LU Jun-Xian, TANG Xiu-Jun, FAN Yan-Feng, MA Yin-Peng, GE Qing-Lian, GAO Yu-Shi* |
Jiangsu Institute of Poultry Science, Yangzhou 225125, China |
|
|
Abstract The Tibetan chicken (Gallus gallus domesticus), a chicken breed endemic to Tibetan Plateau, has adapted to the hypoxic, high-altitude environment over a thousand years. The study on the genetic diversity of the Tibetan chicken is of great significance for genetic conservation and inbreeding programs. In this study, 4 haplotypes were identified based on D-loop sequencing in Tibetan chicken (n=40), and each representative of 4 haplotypes were selected for total mitochondrial genome sequencing and analyzed together with published mitochondrial genome data of red jungle fowl. Four haplotypes belonged to 3 previously published clades, i.e., Clade A, clade B and clade E. Based on D-loop sequencing data, the average haplotype diversity and nucleotide diversity were 0.658±0.065 and 0.004 42±0.000 94, respectively. The mitochondrial genome of Tibetan chicken is 16 785 bp in size, consisting of 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, 13 protein-coding genes and 1 non-coding control region. There were 7 overlapping genes and 17 intergenic regions. The phylogenetic tree had different cluster branching based on D-loop sequences and the mitochondrial genome. The results indicated that Tibetan chicken populations in this study have relatively low nucleotide and haplotype diversity and likely share multiple maternal lineages. The D-loop sequence has limited power for the resolution of phylogenetic relationships in comparison with the complete mitochondrial genome. The results of the current study can be used as baseline genetic information for genetic conservation program and in breeding.
|
Received: 29 May 2020
Published: 01 February 2021
|
|
Corresponding Authors:
* gaoys100@sina.com
|
|
|
|
[1] 高玉时, 贾晓旭, 唐修君, 等. 2015. 基于线粒体基因组D-loop区全序列分析安义瓦灰鸡遗传多样性及其起源进化关系[J]. 农业生物技术学报, 23(7): 940-944. (Gao Y S, Jia X X, Tang X J, et al.2015. The genetic diversity and origin analysis of Anyi Tile-like chickens (Gallus gallus domestiaus) based on mitochondrial DNA D-loop sequence[J]. Journal of Agricultural Biotechnology, 23(7): 940-944.) [2] 国家畜禽遗传资源委员会. 2011. 中国畜禽遗传资源志: 家禽志[M].中国农业出版社, 北京, pp. 2-3. (China National Commission of Animal Genetic Resources. 2011. Animal Genetic Resources in China: Poultry[M]. China Agriculture Press, Beijing. pp. 2-3.) [3] 贾晓旭, 牛鲜艳, 何宗亮, 等. 2010. 利用羽毛对鸽子进行分子性别鉴定. 农业生物技术学报, 18(5): 1019-1023. (Jia X X, Niu X Y, He Z L, et al.2010. Sex identification of pigeon by extracting DNA from its feather[J]. Journal of Agricultural Biotechnology, 18(5): 1019-1023.) [4] 贾晓旭, 唐修君, 樊艳凤, 等. 2017. 华东地区地方鸡品种mtDNA控制区遗传多样性[J]. 生物多样性, 25(5): 540-548. (Jia X X, Tang X J, Fan Y F, et al.2017. Genetic diversity of local chicken breeds in east China based on mitochondrial DNA D-loop region[J]. Biodiversity Science, 25(5): 540-548.) [5] 陆俊贤, 贾晓旭, 唐修君, 等. 2016. 2个云南原始鸡种遗传多样性及其与红色原鸡的亲缘关系[J]. 浙江大学学报(农业与生命科学版), 42(3): 385-390. (Lu J X, Jia X X, Tang X J, et al.2016. Genetic diversity of two local Yunnan chicken breeds and their relationships with red junglefowl[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 42(3): 385-390.) [6] Bao H G, Zhao C J, Li J Yet al.2008. Sequencing and alignment of mitochondrial genomes of Tibetan chicken and two lowland chicken breeds[J]. Science in China, 51(1): 47-51. [7] Gao Y S, Jia X X, Tang X J, et al.2017. The genetic diversity of chicken breeds from Jiangxi, assessed with BCDO2 and the complete mitochondrial DNA D-loop region[J]. PLOS ONE, 12(3): e0173192. [8] Jia X X, Tang X J, Lu J X, et al.2016. The investigation of genetic diversity and evolution of Daweishan Mini chicken based on the complete mitochondrial (mt) DNA D-loop region sequence[J]. Mitochondrial DNA, 27(4) : 3001-3004. [9] Kanginakudru S, Metta M, Jakati R D, et al.2008. Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken[J]. BMC Evolutionary Biology, 8(174).:1-14. [10] Liu L L, Xie H B, Yang Y S, et al.2016. The complete mitochondrial genome of the Xuefeng black-boned chicken[J]. Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis, 27(1): 30-31. [11] Lowe T M, Chan P P.2016. tRNAscan-SE on-line Search and contextual analysis of transfer RNA genes[J]. Nucleic Acids Research, 44(W1): 54-57 [12] Miao Y W, Peng M S, Wu G S, et al.2013. Chicken domestication: An updated perspective based on mitochondrial genomes[J]. Heredity, 110(3): 277-282. [13] Muchadeyi F C, Eding H, Simianer H, et al.2008. Mitochondrial DNA D-loop sequences suggest a Southeast Asian and Indian origin of Zimbabwean village chickens[J]. Animal Genetic, 39(6): 615-622. [14] Osman S A, Yonezawa T, Nishibori M.2016. Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region[J]. Poultry Science, 95(6): 1248-1256. [15] Rozas J, Sanchezelbarrio J C, Messeguer X, et al.2003.DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 19(18): 2496-2497. [16] Tamura K, Stecher G, Peterson D, et al.2013. MEGA6: Molecular evolutionary genetics analysis, version 6.0[J]. Molecular Biology and Evolution. 30(12): 2725-2729. [17] Thompson J D, Gibson T J, Plewniak F, et al.1997. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 25(25): 4876-4882. [18] Xiang H, Gao J Q, Yu B Q, et al.2014. Early Holocene chicken domestication in northern China[J]. Proceedings of the National Academy of Sciences of the USA, 111(49): 17564-17569. [19] Yan M L, Ding S P, Ye S H, et al.2016. The complete mitochondrial genome sequence of the Daweishan Mini chicken[J]. Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis, 27(1): 138-139. [20] Yu Q F, Liu L L, Fu C X, et al.2016. The complete mitochondrial genome of the Huang Lang chicken[J]. Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis, 27(1): 216-217. [21] Zhang L, Zhang P, Li Q P, et al.2017. Genetic evidence from mitochondrial DNA corroborates the origin of Tibetan chickens[J]. PLOS ONE, 12(2): e0172945. |
|
|
|