|
|
The Characteristics and qRT-PCR Analysis of Ten Candidate Effector Proteins Induced by Puccinia triticina |
ZHANG Yue1,*, LI Jian-Yuan1,2,*, ZHANG Na1, WEI Xue-Jun1, YANG Wen-Xiang1,**, LIU Da-Qun1,3,** |
1 College of Plant Protection, Hebei Agricultural University/ Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding 071001, China; 2 Xingtai College, Xingtai 054001, China; 3 Graduate school of Chinese Academy of Agricultural Sciences, Beijing 100081, China |
|
|
Abstract Wheat leaf rust, caused by Puccinia triticina (Pt), is one of the most destructive diseases of wheat. The haustoria of Pt is the main place where the effector proteins were secreted, and the effector protein is the key of the pathogenetic of Pt. To clarify the expression characteristics of these effector proteins in the stage of interaction with the host, 635 candidate effector proteins have been harvested with bioinformatics analysis based on the sequencing of transcriptome. qRT-PCR analysis was used to test the expression characters of 10 candidate effector proteins. The results showed that these genes were consistent with the basic structural properties of fungi effector proteins and were highly homologous to wheat leaf rust BBBD and wheat stem rust (P. graminis f.sp. tritici), three of these genes contained a known conserved domain [Y/F/W]xC, one gene contained [L/I]xAR domain, two genes were glycosyl hydrolase family, and one gene had dioxygenase activity. Six of them was induced to be up-regulated in the late stage and the others were up-regulated dring 6 hpi to 48 hpi respectively. The results lay a foundation for revealing the interaction mechanism between wheat and leaf rust, and also provides favorable conditions for the study of wheat leaf rust effector proteins.
|
Received: 11 November 2019
|
|
Corresponding Authors:
** wenxiangyang2003@163.com; ldq@hebau.edu.cn
|
About author:: * The authors who contribute equally |
|
|
|
[1] 白志英. 2002. 小麦与叶锈菌互作中细胞程序性死亡的研究[D]. 硕士学位论文, 河北农业大学, 导师: 王冬梅, pp. 35-38. (Bai Z Y.2002. Studies on programmed cell death in wheat-wheat leaf rust fungus interaction[D]. Thesis for M.S., Hebei Agriculture University, Supervisor: Wang D M, pp. 35-38.) [2] 胡东维, 李振岐, 康振生. 1997. 不同抗病性小麦品种上白粉菌吸器发育超微结构研究[J]. 菌物系统, 16(02): 122-127. (Hu D W, Li Z Q, Kang Z S.1997. Ultrastructural studies on haustoria development of Blumeria graminis f. sp. tritici[J]. Mycosystema, 16(02): 122-127.) [3] 黄国红, 康振生, 朱之堉, 等. 2003. 小麦叶锈菌在感病寄主上发育的组织病理学和超微结构研究[J]. 植物病理学报, 33(01): 52-56. (Huang G H, Kang Z S, Zhu Z Y, et al.2003. Histopathological and ultrastructural studies on development of Puccinia recondita f.sp. tritici in a susceptible wheat cultivar[J]. Acta Phytopathologica Sinica, 33(01): 52-56.) [4] 季森, 赵梦鑫, 徐静华, 等. 2019. 小麦条锈菌效应蛋白HASP2抑制寄主免疫反应[J]. 植物病理学报, 49(3): 326-333. (Ji S, Zhao M X, Xu J H, et al.2019. Wheat stripe rust effector HASP2 inhibits host immune response[J]. Acta Phytopathologica Sinica, 49(3): 326-333.) [5] 康振生, 李振岐, 庄约兰, 等. 1994. 小麦条锈菌吸器超微结构和细胞化学的研究[J]. 真菌学报, 13(01):52-57. (Kang Z S, Li Z Q, J.Cong, et al.1994. Ultrastructural and cytochemistry of haustorium of wheat stripe rust[J]. Acta Mycologica Sinica, 13(01): 52-57.) [6] 康振生, 王瑶, 黄丽丽, 等. 2003. 小麦品种对条锈病低反应型抗性的组织学和超微结构研究[J]. 中国农业科学, 36(09): 1026-1031. (Kang Z S, Wang Y, Huang L L, et al.2003. Histology and ultrastructure of incompatible combination between Puccinia striiformis and wheat cultivars with resistance of low reaction type[J]. Scientia Agricultura Sinica, 36(09): 1026-1031.) [7] 宋平, 谭成龙, 郭嘉, 等. 2016. 小麦条锈菌效应蛋白基因PSTG_23616的时空表达特征分析[J]. 西北农业学报, 25(09): 1279-1288. (Song P, Tan C L, Guo J, et al.2016. Spatial and temporal pression pattern of effector protein gene PSTG_23616 in Puccinia striiformis f. sp. tritici[J]. Acta Agriculturae Boreali-occidentalis Sinica, 25(09): 1279-1288.) [8] 王力坤, 樊昕, 汤春蕾, 等. 2019. 条锈菌效应子Pst30抑制植物的胼胝质和活性氧积累[J]. 植物病理学报, 1-13. (Wang L K, Fan X, Tang C L, et al.2019. Effector Pst30 from Puccinia striiformis f. sp. tritici inhibits callose deposition and ROS accumulation in plant[J]. Acta Phytopathologica Sinica, 1-13. ) [9] 吴丽民, 卞文印, 胡芳辉, 等. 2013. 稻瘟病菌一个假定苯基丙酮单加氧酶基因(MoPAMO1)的功能分析[J]. 农业生物技术学报, 21(5): 595-602. (Wu L M, Bian W Y, Hu F H, et al.2013. Functional analysis of a putative phenylacetone monooxygenase gene (MoPAMO1) in Magnaporthe oryzae[J]. Journal of Agricultural Biotechnology, 21(5): 595-602.) [10] Adams D.J.2004. Fungal cell wall chitinases and glucanases[J]. Microbiology, 150(7): 2029-2035. [11] Bruce M, Neugebauer K A, Joly D L, et al.2014. Using transcription of six Puccinia triticina races to identify the effective secretome during infection of wheat[J]. Frontiers in Plant Science, 4: 520. [12] Cantu D, Segovia V, Maclean D, et al.2013. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors[J]. BMC Genomics, 14(1): 270. [13] Catanzariti A M, Dodds P N, Lawrence G J, et al.2006. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors[J]. The Plant Cell, 18(1): 243-256. [14] Catanzariti A M, Dodds P N, Ve T, et al.2010. The AvrM effector from flax rust has a structured C-Terminal domain and interacts directly with the M resistance protein[J]. Molecular Plant-Microbe Interactions, 23(1): 49-57. [15] Chen J, Upadhyaya N M, Ortiz D, et al.2017. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat[J]. Science, 358(6370): 1607-1610. [16] Cheng Y, Wu K, Yao J, et al.2017. PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity[J]. Environmental Microbiology, 19(5): 1717-1729. [17] Cuomo C A, Bakkeren G, Khalil H B, et al.2016. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci[J]. G3-Genes Genomes Genetics, 7(2): 361-376. [18] Dodds P N, Lawrence G J, Catanzariti A M, et al.2004. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells[J]. The Plant Cell, 16(3): 755-768. [19] Duplessis S, Hacquard S, Delaruelle C, et al.2011. Melampsora larici-populina transcript profiling during germination and timecourse infection of poplar leaves reveals dynamic expression patterns associated with virulence and biotrophy[J]. Molecular Plant-Microbe Interactions, 24(7): 808. [20] Glass N L, Jacobson D J, Shiu P K T.2000. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi[J]. Annual Review of Genetics, 34(1): 165-186. [21] Godfrey D, Böhlenius H, Pedersen C, et al.2010. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif[J]. BMC Genomics, 11(1): 317. [22] Humira S, Deshmukh R K, Bélanger Richard R.2016. Computational prediction of effector proteins in fungi: Opportunities and Challenges[J]. Frontiers in Plant Science, 7: 126. [23] Kües U.2000. Life history and developmental processes in the basidiomycete Coprinus cinereus[J]. Microbiology and Molecular Biology Reviews, 64(2): 316-353. [24] Kamada T, Takemaru T.1977. Stipe elongation during basidiocarp maturation in Coprinus macrorhizus: changes in polysaccharide composition of stipe cell wall during elongation[J]. Plant and Cell Physiology, 18(6): 1291-1300. [25] Kemen E, Kemen A C, Rafiqi M, et al.2005. Identification of a protein from rust fungi trans-ferred from haustoria into infected plant cells[J]. Molecular Plant-Microbe Interactions, 18(11): 1130-1139 [26] Li T, Wang J, Lu M, et al.2017. Selection and validation of appropriate reference genes for qRT-PCR analysis in Isatis indigotica fort[J]. Frontiers in Plant Science, 8: 1139. [27] Liu C, Pedersen C, Schultz-Larsen T, et al.2016. The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases[J]. New Phytologist, Doi: 10.1111/nph.14034. [28] Liu Z, Niu X, Wang J, et al.2015. Comparative study of nonautolytic mutant and wild-type strains of Coprinopsis cinerea supports an important role of glucanases in fruiting body autolysis[J]. Journal of Agricultural and Food Chemistry, 63(43): 9609-9614. [29] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method[J]. Methods, 25(4): 402-408. [30] Mouyna I, Hartl L, Latgé J P.2013. β-1, 3-glucan modifying enzymes in Aspergillus fumigatus[J]. Frontiers in Microbiology, 4: 81. [31] Neugebauer K A, Bruce M, Todd T, et al.2018. Wheat differential gene expression induced by different races of Puccinia triticina[J]. PLOS ONE, 13(6): e0198350. [32] Petre B, Lorrain C, Saunders D G O, et al.2016. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts[J]. Cellular Microbiology, 18: 453-465. [33] Petre B, Saunders D G O, Sklenar J, et al.2020. In planta expression screens of candidate effector proteins from the wheat yellow rust fungus reveal processing bodies as a pathogen-targeted plant cell compartment[J]. BioRxiv, 032276. [34] Qi T, Guo J, Liu P, et al.2019. Stripe rust effector PstGSRE1 disrupts nuclear localization of ROS-promoting transcription factor TaLOL2 to defeat ROS-induced defense in wheat[J]. Molecular Plant, 12(12): 1624-1638. [35] Sakamoto Y, Irie T, Sato T.2005. Isolation and characterization of a fruiting body-specific exo-β-1,3-glucanase-encoding gene, exg1, from Lentinula edodes[J]. Current Genetics, 47(4): 244-252. [36] Salcedo A, Rutter W, Wang S, et al.2017. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99[J]. Science, 358(6370): 1604-1606. [37] Sandini S, Valle R L, Bernardis F D, et al.2007. The 65 kDa mannoprotein gene of Candida albicans encodes a putative β-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity[J]. Cellular Microbiology, 9(5): 1223-1238. [38] Tremblay A, Hosseini P, Li S, et al.2013. Analysis of Phakopsora pachyrhizi transcript abundance in critical pathways at four time-points during infection of a susceptible soybean cultivar using deep sequencing[J]. BMC Genomics, 14(1): 614. [39] Van der Merwe M M, Kinnear M W, Barrett L G, et al.2009. Positive selection in AvrP4 avirulence gene homologues across the genus Melampsora[J]. Proceedings of the Royal Society B Biological Sciences, 276(1669): 2913-2922. [40] Wit P J G M D, Mehrabi R, Burg H A V D, et al.2009. Fungal effector proteins: Past, present and future[J]. Molecular Plant Pathology, 10(6): 735-747. [41] Xu Q, Tang C, Wang X, Sun S, et al.2019. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function[J]. Nature Communications, 10: 5571. [42] Yang Q, Huai B, Lu Y, et al.2020. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease[J]. New Phytologist, 225(2): 880-895. [43] Yang Z.2013. Identification and expression analysis of a new glycoside hydrolase family 55 exo-β-1,3-glucanase-encoding gene in Volvariella volvacea suggests a role in fruiting body development[J]. Gene, 527(1): 154-160. [44] Yin C, Ramachandran S R, Zhai Y, et al.2019. A novel fungal effector from Puccinia graminis suppressing RNA silencing and plant defense responses[J]. New Phytologist, 222: 1561-1572. [45] Zhao M X, Wang J F, Ji S, et al.2018. Candidate effector Pst_8713 impairs the plant immunity and contributes to virulence of Puccinia striiformis f. sp. tritici[J]. Frontiers in Plant Science, 9: 1294. |
[1] |
HONG Bao-Hua, MA Rong-Rong, YUAN Na, ZHANG Ke-Xin, LI Jin-Jin, NI Si-Zhen, ZHU Wei-Dong, ZHANG Hong-Hu, QIAN Dong. Isolation, Identification and Pathogenicity Study of Lactococcus garvieae from Cultured Liza haematocheila[J]. 农业生物技术学报, 2020, 28(8): 1458-1470. |
|
|
|
|