|
|
Effects of PPARγ Overexpression by Recombinant Adenovirus on Fat Deposition in Cattle (Bos taurus) Muscle Cells |
HUA Liu-Shuai1, 2, WANG Jing2, XU Zhao-Xue2, WANG Er-Yao2, *, CHEN Hong1, * |
1 College of Animal Science and Technology, Northwest A&F University/Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100 China;; 2 Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation/Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China |
|
|
Abstract Intramuscular fat deposition is a complex biological process involving muscle cell differentiation, adipocyte differentiation and triglyceride metabolism. Peroxisome proliferator-activated receptor γ (PPARγ) gene plays a central role in the differentiation of adipocytes in animals, but the relationship between PPARγ gene expression and intramuscular fat content still not clear. The aim of this study was to package the cattle (Bos taurus) PPARγ Adenovirus and analyze the effects of PPARγ overexpression on fat deposition in muscle cells. After subcloning PPARγ into the vector pAdTrack-CMV, a shuttle vector pAdTrack-CMV-PPARγ was constructed. The linearized shuttle vector pAdTrack-CMV-PPARγ and the adenoviral backbone vector pAdEasy-1 were co-transformed into the recombinant bacterial BJ5183 (Escherichia coli), and after homologous recombination, the adenoviral backbone vector pAdEasy-1-PPARγ containing the gene of interest was constructed. The linearized pAdEasy-1-PPARγ was transferred into 293A cells (Homo sapiens) to package and amplify the PPARγ Adenovirus. After infection of bovine muscle cells with PPARγ Adenovirus, the expression changes of the fat deposition related genes were detected by quantitative real-time PCR (qRT-PCR). The results showed that the PPARγ Adenovirus vector was successfully constructed. After the package and 2 times of amplification, the PPARγ Adenovirus with a titer of 2×1011 plaque forming unit (PFU) /mL were obtained. Infection of bovine muscle cells with the PPARγ Adenovirus yielded an infection efficiency of more than 90%. After overexpression of PPARγ in bovine muscle cells, the positive regulation genes of fat deposition, including fat acid binding proteins 4 (FABP4), glucose transporter 4 (Glut4) and adipose-specific phospholipase A2 (AdPLA2) were up-regulated to 1.89, 1.51 and 1.56 times (P≤0.05). While the negative regulation genes of fat deposition including GATA binding protein 2 (GATA2), hormone-sensitive lipase (HSL) and nuclear receptor subfamily 2, group F, member 2 (Nf2f2) were down-regulated to 0.45, 0.57 and 0.25 times (P≤0.05). The expression level of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1a) was up-regulated to 141.41 times (P≤0.01), and the expression of myogenic factor 5 (Myf5) gene was not changed much. This study successfully packaged PPARγ Adenovirus, providing a tool for further study of the function of this gene, and proved that overexpression of PPARγ in bovine muscle cells has a tendency to promote fat deposition in muscle cells.
|
Received: 05 July 2019
|
|
Corresponding Authors:
* chenhong1212@263.net; wangeryao666@qq.com
|
|
|
|
1 陈健华, 孙颖, 段友容. 2017. 静脉递送腺病毒载体在肿瘤基因治疗中的研究进展[J]. 肿瘤, 37(12): 1339-1343. (Chen J H, Sun Y, Duan Y R.2017. Advances in intravenous delivery of adenoviral vectors in tumor gene therapy[J]. Tumor, 37(12): 1339-1343.) 2 崔婷婷, 邢天宇, 褚衍凯, 等. 2017. PPARγ在脂肪生成中的遗传和表观遗传调控[J]. 遗传, 39(11): 1066-1077. (Cui T T, Xing T Y, Chu Y K, et al.2017. Genetic and epigenetic regulation of PPARγ during adipogenesis[J]. Hereditas, 39(11): 1066-1077.) 3 段安琴, 庞春英, 朱鹏, 等. 2016. 腺病毒载体转染水牛不同原代体细胞的效果比较[J]. 中国畜牧兽医, 43(10): 2661-2665. (Duan A Q, Pang C Y, Zhu P, et al.2016. Effect comparison of Adenovirus vector transfer into different buffalo cells[J]. China Animal Husbandruy & Veterinary Medicine, 43(10): 2661-2665.) 4 郝称莉, 李齐发, 乔永, 等. 2008. 湖羊肌肉组织H-FABP和PPARγ基因表达水平与肌内脂肪含量的相关研究[J]. 中国农业科学, 4(11): 3776-3783. (Hao C L, Li Q F, Qiao Y, et al.2008. Association of the H-FABP and PPARγ gene expression with intramuscular fat content in Hu sheep muscles[J]. Scientia Agricultura Sinica, 4(11): 3776-3783) 5 滑留帅. 2012. 牛SHH基因通过PPARγ通路调控脂肪生成[D]. 博士学位论文, 西北农林科技大学, 导师: 陈宏, pp. 43-47. (Hua L S.2012. Cattle SHH gene regulating adipogenesis through PPARγ pathway[D]. Thesis for Ph.D., Northwest A&F University, Supervisor: Chen H, pp. 43-47.) 6 滑留帅, 王璟, 李明勋, 等. 2013. 动物脂肪组织的分化起源[J]. 中国牛业科学, 39(1): 42-45. (Hua L S, Wang J, Li M X, et al.2013. The differentiation orgin of animal adipose[J]. China Cattle Science, 39(1): 42-45.) 7 黄锦亮. 2012. 猪PPARγ2基因肌肉超表达真核表达载体构建以及在转基因小鼠中的功能验证[D]. 博士学位论文, 华中农业大学, 导师: 熊远著, pp. 64-68. (Huang J L.2012. Construction of swine muscle-specific overexpression PPARγ2 eukaryotic-expressing vectors and the function verification in transgenic mice[D]. Thesis for Ph.D., Huazhong Agricultural University, Supervisor: Xiong Y Z, pp. 64-68.) 8 李健. 2010. 西杂牛PPARγ2、PGC-1α、MEF2C基因表达量及其与肌内脂肪含量、嫩度的相关分析[D]. 硕士学位论文, 四川农业大学, 导师: 赖松家, pp. 25-36. (Li J.2010. The gene expression of PPARγ2, PGC-1α, MEF2C and their correlation analysis with intramuscular fat content and tenderness in Simmental hybridization[D]. Thesis for M.S., Sichuan Agricultural University, Supervisor: Lai S J, pp. 25-36) 9 李琳, 郑卓, 贺红专. 2016. PPARγ基因调控猪脂肪沉积研究进展[J]. 中国猪业, 11(08): 57-60. (Li L, Zheng Z, He H Z.2016. Progress in the regulation of porcine fat deposition by PPARγ gene[J]. China Swine Industry, 11(08): 57-60.) 10 李密杰, 张春梅, 蓝贤勇, 等. 2012. 共激活因子PGC-1α的研究进展[J]. 中国牛业科学, 38(04): 35-38. (Li M J, Zhang C M, Lan X Y, et al.2012. Research advance of coregulator PGC-1α[J]. China Cattle Science, 38(4): 35-38.) 11 李树国, 牛化欣, 于建华, 等. 2018. 肉牛肌内脂肪和脂肪酸的营养价值及其调控[J]. 黑龙江畜牧兽医, (21): 59-62. (Li S G, Niu H X, Yu J H, et al. 2018. Nutritional value and regulation of intramuscular fat and fatty acid in beef cattle[J]. Heilongjiang Animal Science and Veterinary Medicine, (21): 59-62.) 12 赖新生. 2013. 牛DEC1基因抑制肌卫星细胞和脂肪细胞分化[D]. 博士学位论文, 西北农林科技大学, 导师: 陈宏, pp. 21-23. (Lai X S.2013. Cattle DEC1 gene inhibits defferentiation of satellite cells and preadipocyte[D]. Thesis for Ph.D., Northwest A&F University, Supervisor: Chen H, pp. 21-23.) 13 李优磊. 2018. PPAR信号通路在调控猪皮下脂肪与肌内脂肪差异沉积中的作用及机制研究[D]. 博士学位论文, 西北农林科技大学, 导师: 杨公社; 郑雪莉; 李晓, pp. 45-52. (Li Y L.2018. The differential function and mechanism of PPAR signaling in regulation of porcine subcutaneous and intramuscular fat deposition[D]. Thesis for Ph.D., Northwest A&F University, Supervisor: Yang G S, Zheng X L, Li X, pp. 45-52.) 14 毛衍伟, 张一敏, 朱立贤, 等. 2018. 肌内脂肪对牛背最长肌品质的影响及肌内脂肪沉积机制的研究[J]. 食品与发酵工业, 44(11): 89-96. (Mao Y W, Zhang Y M, Zhu L X, et al.2018. Effect of intramuscular fat on longissimus dorsi muscle quality and mechanism of intramuscular fat deposition study[J]. Food and Fermentation Industries, 44(11): 89-96.) 15 应飞. 2016. 利用转基因猪模型研究PGC1α对肌纤维类型转变的影响及其分子机制[D]. 博士学位论文, 华中农业大学, 导师: 熊远著, 左波, pp. 12-17 (Ying F. 2016. The effects of PGC1α gene on the muscle fiber conversion and their molecular mechanism in transgenic pig model[D]. Thesis for Ph.D., Huazhong Agriculural University, Supervisor: Xiong Y Z, Zuo B, pp. 12-17.) 16 张乐, 宁越, 李佩韦, 等. 2018. 腺病毒载体介导Smad3基因在秦川牛前体脂肪细胞中的过表达和沉默[J]. 畜牧兽医学报, 49(9): 1840-1850. (Zhang L, Ning Y, Li P W, et al.2018. The overexpression and interference of Smad3 gene in Qinchuan cattle preadipocytes mediated by Adenovirus vector[J]. Chinese Journal of Animal and Veterinary Sciences, 49(9): 1840-1850.) 17 Asakura A, Rudnicki M A, Komaki M.2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation[J]. Differentiation, 68(4): 245-253. 18 Esterbauer H, Oberkofler H, Krempler F, et al.1999. Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression[J]. Genomics, 62(1): 98-102. 19 Hausman G J, Dodson M V, Ajuwon K, et al.2009. The biology and regulation of preadipocytes and adipocytes in meat animals[J]. Journal of Animal Science, 87(4): 1218-1246. 20 Luo J, Deng Z, Luo X, et al.2007. A protocol for rapid generation of recombinant Adenoviruses using the AdEasy system[J]. Nature Protocols, 2(5): 1236-1247. 21 Ramakrishnan M A.2016. Determination of 50% endpoint titer using a simple formula[J]. World Journal of Virology, 5(2): 85-86. 22 Zeng Z, Yu B, Mao X, et al.2012. Effects of dietary digestible energy concentration on growth, meat quality, and PPARγamma gene expression in muscle and adipose tissues of Rongchang piglets[J]. Meat science, 90(1): 66-70. |
|
|
|