|
|
Ultrastructure of Marc-145 Cells in Autophagy Induced by Porcine reproductive and respiratory syndrome virus |
LI Xiao-Jing1, GONG Shuang-Yan1, LI You-You1, CHEN Ying-Qi1, CAI Yao1, LI Yu-Meng1, XU Yi-Fei1, XU Zhi-Wen1,2,*, ZHU Ling1,2 |
1 College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; 2 Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China |
|
|
Abstract Autophagy is one of the basic researches of viral infection and tumor development. In order to understand the characteristics of autophagosomes, the determination of autophagosomes and the ultrastructure of cells, this experiment used Porcine reproductive and respiratory syndrome virus (PRRSV) to induce autophagy in African green monkey (Cercopithecus aethiops) embryonic kidney cells Marc-145. The cells and autophagosomes were observed by transmission electron microscopy and fluorescence microscope. The occurrence of autophagy was initially determined, and changes in structures such as lysosomes, endoplasmic reticulum, mitochondria and nucleus were observed. Marc-145 cells changed from a typical fusiform to a round shape after PRRSV infection, and there were significant autophagosomes in the infected cells. Ultrastructural changes such as mitochondrial ridge dissolution, endoplasmic reticulum degranulation, lysosomal activity enhancement, and nuclear abnormalities were observed during ultrastructural observation. The results showed that PRRSV induced autophagy in Marc-145 cells and the degree of autophagy were closely related to ultrastructure. The ultrastructural state could be used as an important reference for determining the development of autophagy. The results showed that PRRSV induced autophagy in Marc-145 cells, the degree of autophagy was closely related to the ultrastructure, and the state of the ultrastructure could be used as an important reference for judging the development of autophagy. This study could provide important reference for the study of autophagy, cell ultrastructure and viral infection.
|
Received: 14 May 2019
|
|
Corresponding Authors:
*abtcxzw@126.com
|
|
|
|
[1] 陈全刚. 2013. PRRSV感染诱导细胞自噬及内质网应激的机制研究[D]. 博士学位论文, 华中农业大学, 导师: 方六荣, pp. 60-65. (Chen Q G, 2013,The mechanisms study of cellular autophagy and ER stressm in duced by PRRSV[D]. Thesis for Ph.D, Huazhong Agricultura University, Supervisor: Fang L R, pp. 60-65.) [2] Ashford T P, Porter K R.1962. Cytoplasmic components in hepatic cell lysosomes[J]. Journal of Cell Biology, 12(1): 198-202. [3] Dalibor M, Mark P, Devenish R J, et al.2010. The intricacy of nuclear membrane dynamics during nucleophagy[J]. Nucleus, 1(3): 213-223. [4] de Duve C.1963. The Lysosome[J]. Scientific American, 208(5): 64-72. [5] Fatibene L, Francaviglia M, Magnano G.2012. Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication[J]. Virus Research, 163(2): 650-655. [6] Gomez-Suaga P, Paillusson S, Stoica R, et al.2017. The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy[J]. Current Biology , 27(3): 371-385. [7] Klionsky D J, Hagai A, Patrizia A, et al.2012. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes[J]. Autophagy, 8(4): 445-544. [8] Kovács A L, Réz G, Pálfia Z, et al.2000. Autophagy in the epithelial cells of murine seminal vesicle in vitro. Formation of large sheets of nascent isolation membranes, sequestration of the nucleus and inhibition by wortmannin and 3-ethyladenine[J]. Cell & Tissue Research. 302(2): 253-261. [9] Lucocq J M, Hacker C.2013. Cutting a fine figure: On the use of thin sections in electron microscopy to quantify autophagy[J]. Autophagy, 9(9):1443-1448. [10] Martinet W, de Meyer G R, Andries L, et al.2006. Detection of autophagy in tissue by standard immunohistochemistry: Possibilities and limitations[J]. Autophagy, 2(1): 55-57. [11] Mijaljica D, Prescott M, Devenish R J.2010. Autophagy in disease[J]. Methods in Molecular Biology, 648(1): 79-92. [12] Min H, Kershaw M J, Soanes D M, et al.2013. Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae requires non-selective macro-autophagy[J]. PLOS ONE, 7(3): 1-17. [13] Mizushima N, Kuma A.2008. Autophagosomes in GFP-LC3 transgenic mice[J]. Methods in Molecular Biology, 445(445): 119-124. [14] Park Y E, Hayashi Y K, Bonne G, et al.2009. Autophagic degradation of nuclear components in mammalian cells[J]. Autophagy, 5(6): 795-804. [15] Pugsley H R.2016. Quantifying autophagy: Measuring LC3 puncta and autolysosome formation in cells using multispectral imaging flow cytometry[J]. Methods. 112(1): 147-156. [16] Qu X P, Yu J, Bhagat G, et al.2003. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene[J]. Journal of Clinical Investigation, 112(12): 1809-1820. [17] Réz G, Meldolesi J.1980. Freeze-fracture of drug-induced autophagocytosis in the mouse exocrine pancreas[J]. Laboratory Investigation; A journal of technical methods and pathology, 43(3): 269-277. [18] Roberts P, Moshitch-Moshkovitz S, Kvam E, et al.2003. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 14(1): 129-141. [19] Rubinsztein D C, Cuervo A M, Ravikumar B, et al.2009. In search of an 'autophagomometer'[J]. Autophagy, 5(5): 585-589. [20] Rui H, Wei L.2015. Identifying an essential role of nuclear LC3 for autophagy[J]. Autophagy, 11(5): 852-853. [21] Stromhaug P E, Klionsky D J.2010. Approaching the molecular mechanism of autophagy[J]. Traffic. 2(8): 524-531. [22] Swanlund J M, Kregel K C, Oberley T D.2010. Investigating autophagy: Quantitative morphometric analysis using electron microscopy[J]. Autophagy, 6(2): 270-277. [23] Tagaya M, Arasaki K.2017. Regulation of mitochondrial dynamics and autophagy by the mitochondria-associated membrane[J]. Organelle Contact Sites, 99(1): 33-47. [24] Takahiko A, Pearlman R E, Hiroshi E, et al.2010. Gigantic macroautophagy in programmed nuclear death of Tetrahymena thermophila[J]. Autophagy, 6(7): 901-911. [25] Xu Q, Xin J L, Qing S C, et al.2017. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy[J]. Molecular Cell, 65(5): 917-931. |
|
|
|