|
|
Bioinformatics Analysis, Subcellular Localization and Expression Analysis of OsERF103 Gene in Rice (Oryza sativa) |
ZOU Jie*, LI Sheng-Qiang, LIU Xian-Jun, CHEN Gang |
College of Life Science and Environmental Resources/Jiangxi Provincial Key Laboratory of Crop Growth and Development Regulation, Yichun University, Yichun 336000, China |
|
|
Abstract Ethylene responsive factors (ERFs) are plant-specific transcription factors that play important roles in plant developmental process and in response to abiotic stress. In order to explore the function of OsERF103 (GenBank No. XM_015768788) in rice (Oryza sativa) , bioinformatics methods were used to analyze the sequence characteristic of OsERF103. For subcellular localization analysis, the fusion expression vector of pBWA(V)HS-OsERF103-Glosgfp was constructed and transformed into rice protoplast, then laser scanning confocal microscopy was used to observe the subcellular localization of OsERF103 fusion protein in rice protoplast; Expression analysis of OsERF103 in different tissues and under different abiotic stress conditions was conducted by qRT-PCR. The results showed that OsERF103 was a hydrophilic and unstable protein without signal peptide and transmembrane structure, and contained an AP2 (APETALA2) domain. Phylogenetic analysis revealed the OsERF103 was evolutionarily closest to a abscisic acid repressor 1-like (ABR1-like) protein of Oryza brachyantha. The results of subcellular localization showed that OsERF103 was located in the nucleus. OsERF103 transcripts were detected in all sampled tissues at booting stage, with the highest level detected in root and weak level detected in leaf and young spike. OsERF103 transcripts were induced by high temperature, low temperature, PEG6000, high salt and abscisic acid (ABA), and differential expression patterns of OsERF103 were showed under the different treatment conditions. This study provides basic data for further exploring the biological function of OsERF103.
|
Received: 24 July 2019
|
|
Corresponding Authors:
* jetzou@126.com
|
|
|
|
[1] 段炼, 钱君, 郭小雨等, 2014. 一种快速高效的水稻原生质体制备和转化方法的建立[J]. 植物生理学报, 50(3): 351-357. (Duan L, Qian J, Guo X Y, et al.2014. A rapid and efficient method for isolation and transformation of rice protoplast[J]. Plant Physiology Communications, 50(3): 351-357.) [2] 刘志薇, 熊洋洋, 李彤, 等. 2014. 茶树中两个ERF类转录因子的分离及不同茶树中温度胁迫的响应分析[J]. 植物生理学报, 50(12): 1821-1832. (Liu Z W, Xiong Y Y, Li T, et al.2014. Isolation and expression profiles analysis of two ERF subfamily transcription factor genes under temperature stresses in Camellia sinensis[J]. Plant Physiology Journal, 50(12): 1821-1832.) [3] Cai X T, Xu P, Zhao P X, et al.2014. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation[J]. Nature Communications, 5: 5833. [4] Cui L, Feng K, Wang M, et al.2016. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon[J]. BMC Genomics, 17(1): 636. [5] Girardi C L, Rombaldi C V, Dal Cero J, et al.2013. Genome-wide analysis of the AP2/ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis[J]. Scientia Horticulturae, 151: 112-121. [6] Gu C, Guo Z H, Hao P P, et al.2017. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm[J]. Botanical Studies, 58(1): 1-8. [7] Gutterson N, Reuber T L.2004. Regulation of disease resistance pathways by AP2/ERF transcription factors[J]. Current Opinion in Plant Biology, 7(4): 465-471. [8] Heyman J, Canher B, Bisht A, et al.2018. Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair[J]. Journal of Cell Science, 131(2): jcs.208215. [9] Hu L, Liu S.2011. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers[J]. Genetics and Molecular Biology, 34(4): 624-633. [10] Hu Y, Chong K, Wang T.2008a. OsRAF is an ethylene responsive and root abundant factor gene of rice[J]. Plant Growth Regulation, 54(1): 55-61. [11] Hu Y, Zhao L, Chong K.2008b. Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis[J]. Journal of Plant Physiology, 165(16): 1717-1725. [12] Jain M, Nijhawan A, Tyagi A K, et al.2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR[J]. Biochemical and Bbiophysical Research Communications, 345(2): 646-651. [13] Jin J H, Wang M, Zhang H X, et al.2018a. Genome-wide identification of the AP2/ERF transcription factor family in pepper (Capsicum annuum L.)[J]. Genome, 61(9): 663-674. [14] Jin Y, Pan W, Zheng X, et al.2018b. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues[J]. Plant Molecular Biology, 98(1-2): 51-65. [15] Lata C, Mishra A K, Muthamilarasan M, et al.2014. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.)[J]. PLOS ONE, 9(11): e113092. [16] Lee D K, Jung H, Jang G, et al.2016. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance[J]. Plant Physiology, 172(1): 575-588. [17] Li J, Guo X, Zhang M, et al.2018. OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis[J]. Plant Science, 270: 131-139. [18] Licausi F, Giorgi F M, Zenoni S, et al.2010. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera[J]. BMC Genomics, 11(1): 719. [19] Licausi F, Ohme‐Takagi M, Perata P.2013. APETALA2/Ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs[J]. New Phytologist, 199(3): 639-649. [20] Liu D, Chen X, Liu J, et al.2012. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance[J]. Journal of Experimental Botany, 63(10): 3899-3911. [21] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 25(4): 402-408. [22] Lu J, Ju H, Zhou G, et al.2011. An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice[J]. Plant Journal, 68(4): 583-596. [23] Nakano T, Suzuki K, Fujimura T, et al.2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 140(2): 411-432. [24] Oh S J, Kim Y S, Kwon C W, et al.2009. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions[J]. Plant Physiology, 150(3): 1368-1379. [25] Phukan U J, Jeena G S, Vineeta T, et al.2017. Regulation of Apetala2/Ethylene response factors in plants[J]. Frontiers in Plant Science, 8: 150. [26] Pirrello J, Prasad B C N, Zhang W, et al.2012. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene[J]. BMC Plant Biology, 12(1): 190. [27] Ramegowda V, Basu S, Krishnan A, et al.2014. Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions[J]. Plant Physiology, 166(3): 1634. [28] Saelim L, Akiyoshi N, Tan T T, et al.2019. Arabidopsis Group Ⅲd ERF proteins positively regulate primary cell wall-type CESA genes[J]. Journal of Plant Research, 132(1): 117-129. [29] Schmidt R, Mieulet D, Hubberten H M, et al.2013. SALT-RESPONSIVE ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice[J]. The Plant Cell, 25(6): 2115-2131. [30] Sharoni AM, Nuruzzaman M, Satoh K, et al.2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice[J]. Plant and Cell Physiology, 52(2): 344-360. [31] Sun Z M, Zhou M L, Xiao X G, et al.2014. Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance[J]. Functional & Integrative Genomics, 14(3): 453-466. [32] Tezuka D, Kawamata A, Kato H, et al.2019. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae[J]. Plant Physiology and Biochemistry, 135: 263-271. [33] Wang M, Dai W, Du J, et al.2019. ERF109 of trifoliate orange (Poncirus trifoliata (L.) Raf.) contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process[J]. Plant Biotechnology Journal, 17(7): 1316-1332. [34] Wu D, Ji J, Wang G, et al.2014. LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco[J]. Plant Cell Reports, 33(12): 2033-2045. [35] Xiao G, Qin H, Zhou J, et al.2016. OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism[J]. Plant Molecular Biology, 90(3): 293-302. [36] Xiong H, Yu J, Miao J, et al.2018 Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging[J]. Plant Physiology, 178(1): 451-467. [37] Xu Z S, Chen M, Li L C, et al.2011. Functions and application of the AP2/ERF transcription factor family in crop improvement[J]. Journal of Integrative Plant Biology, 53(7): 570-585. [38] Yang H, Yu C, Yan J, et al.2014. Overexpression of the Jatropha curcas JcERF1 gene coding an AP2/ERF-Type transcription factor increases tolerance to salt in transgenic tobacco[J]. Biochemistry, 79(11): 1226-1236. [39] Yao W, Wang L, Zhou B, et al.2016. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco[J]. Journal of Plant Physiology, 198: 23-31. [40] Yu Y, Yang D, Zhou S, et al.2017. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice[J]. Protoplasma, 254(1): 401-408. [41] Zhang G, Zhao F, Chen L, et al.2019. Jasmonate-mediated wound signaling promotes plant regeneration[J]. Nature Plants, 5(5): 491-497. [42] Zhang H, Hong Y, Huang L, et al.2016. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea[J]. Scientific Reports, 6: 30251. [43] Zhang H, Zhang J, Quan R, et al.2013. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance[J]. Planta, 237(6): 1443-1451. [44] Zhang X, Li J, Liu A, et al.2012. Expression profile in rice panicle: Insights into heat response mechanism at reproductive stage[J]. PLOS ONE, 7(11): e49652. [45] Zhao Y, Cheng S, Song Y, et al.2015. The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling[J]. The Plant Cell, 27(9): 2469-2483. [46] Zhuang J, Anyia A, Vidmar J, et al.2011a. Discovery and expression assessment of the AP2-like genes in Hordeum vulgare[J]. Acta Physiologiae Plantarum, 33(5): 1639-1649. [47] Zhuang J, Chen J M, Yao Q H, et al.2011b. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum[J]. Molecular Biology Reports, 38(2): 745-753. |
|
|
|