|
|
Microsatellite Genetic Diversity of Seven Loach (Misgurnus anguillicaudatus) Populations in China |
LIU Jie1,2, GAO Feng-Ying1,*, LU Mai-Xin1,*, CHEN Gang2, CAO Jian-Meng1, LIU Zhi-Gang1, WANG Miao1 |
1 Pearl River Fisheries Research Institute/Key Laboratory of Tropical &Subtropical Fishery Resource Application &Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou 510380, China; 2 College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China |
|
|
Abstract Due to environmental pollution and human activities, the amount of loach resources in China has been sharply reduced, and germplasm resources have been degraded. In order to explore the genetic diversity and population genetic structure of different geographical populations of loach (Misgurnus anguillicaudatus) in China, 10 microsatellite markers were used to analyze the genetic diversity of 7 populations in Poyang Lake region and Pearl River Basin of China (Poyang Lake, Yingde, Qingyuan, Liannan, Nanxiong, Meizhou, Liuzhou). The results showed that the average number of allele (Na) and effective allele (Ne) per locus were 7 and 2.5, and the average observed heterozygosity (Ho) and expected heterozygosity (He) were 0.327 4 and 0.396 0. The average population inbreeding coefficient (Fis), genetic differentiation coefficient (Fst) and number of migrants per generation (Nm) of the 7 loach populations were 0.093 0, 0.372 0 and 0.422 1, indicating that the level of genetic exchange among the 7 populations was low and there was a high degree of genetic differentiation. A total of 79 alleles were amplified in 10 pairs of microsatellite primers, the Na, Ne, Ho, He and polymorphic information content (PIC) ranged from 3.0 to 7.5, 1.7 to 5.5, 0.307 4 to 0.534 7, 0.329 0 to 0.861 5, and 0.316 8 to 0.529 4, respectively. The genetic distance between the 7 loach populations was 0.045 3~1.602 3. The genetic relationship of Liuzhou and Nanxiong population showed the closest with lowest distance of 0.045 3, while the genetic relationship of Qingyuan and Meizhou population showed the farthest with highest distance of 1.602 3. The clustering analysis based on genetic distance showed that the Liuzhou, Nanxiong, Liannan and Meizhou populations were clustered into one branch, while the Qingyuan, Yingde and Poyang Lake populations were clustered into another branch. Above results demonstrated that the level of genetic diversity in loach in China was moderate and the genetic differentiation among loach populations was affected by factors such as self-migration ability and geographical isolation. This study provides a theoretical basis for further selection of the basic group of loach fine breeds and the protection of loach germplasm resources.
|
Received: 14 June 2019
|
|
Corresponding Authors:
* fengyinggao2011@163.com;mx-lu@163.com
|
|
|
|
[1] 丁海燕. 2015. 微卫星标记对中国四水系七个泥鳅(Misgurnus anguillicaudatus)群体的遗传多样性分析[D]. 硕士学位论文, 中国海洋大学, 导师: 杨官品, pp. 16-17. (Ding H Y.2015. Analysis of genetic diversity in seven populations of Misgurnus anguillicaudatus from four water systems using microsatellite markers[D]. Thesis for M.S., Ocean University Of China, Supevisor: Yang G P, pp. 16-17.) [2] 丁海燕, 朱明, 彭冲, 等. 2015. 我国泥鳅微卫星遗传多样性初步分析[J]. 水产学报, 39(10): 1433-1442. (Ding H Y, Zhu M, Peng C, et al.2015. Preliminary analysis of the microsatellite diversity of Chinese loach (Misgurnus anguillicaudatus)[J]. Journal of Fisheries of China, 39(10): 1433-1442. ) [3] 侯仕营, 马爱军, 王新安, 等. 2011. 大菱鲆4个引进地理群体遗传多样性的微卫星分析[J]. 渔业科学进展, 32(01): 16-23. (Hou S Y, Ma A J, Wang X A, et al.2011. Analysis of genetic structure among four different stocks of turbot Scophthalmus maximus using microsatellite technique[J]. Progress in Fishery Sciences, 32(01): 16-23.) [4] 李彩娟, 凌去非, 葛辰, 等. 2014. 中国4大湖泊大鳞副泥鳅群体遗传多样性分析[J]. 江苏农业学报, 30(05): 1087-1094. (Li C J, Ling Q F, Ge C, et al.2014. Genetic diversity of Paramisgurnus dabryanus from four big lakes in China[J]. Jiangsu Journal of Agricultural Sciences, 30(05): 1087-1094.) [5] 李可, 马徐发, 谢鹏, 等. 2018. 基于微卫星标记的拟鲤遗传多样性及群体遗传结构分析[J]. 华中农业大学学报, 37(04): 112-120. (Li K, Ma X F, Xie P, et al.2018. Genetic diversity and population genetic structure of Rutilus rutilus based on microsatellite genetic markers[J]. Journal of Huazhong Agricultural University, 37(04): 112-120.) [6] 刘萍, 宋来鹏, 李健, 等. 2008. 蟹类微卫星DNA标记的筛选及其在遗传学研究中的应用[J]. 中国海洋大学学报, (05): 712-718. (Liu P, Song L P, Li J, et al. 2008. Development of microsatellite DNA markers and their applications in genetic studies in crabs[J]. Periodical of Ocean University of China, (05): 712-718.) [7] 李雅娟, 张明昭, 于卓, 等. 2010. 黑龙江泥鳅、北方泥鳅和泥鳅的形态差异分析[J]. 大连海洋大学学报, 25(05): 397-401. (Li Y J, Zhang M Z, Yu Z, et al.2010. Morphological variations in Amur weatherfish Misgurnus mohoity, northern weatherfish Misgurnus bipartitus and oriental weatherfish Misgurnus anguillicaudatus in China[J]. Journal of Dalian Ocean University, 25(05): 397-401.) [8] 牟希东, 白俊杰, 汪学杰, 等. 2007. 三个不同养殖群体金鱼遗传多样性的RAPD分析[J]. 海洋渔业, (01): 20-24. (Mou X D, Bai J J, Wang X J, et al. 2007. Genetic diversity of three cultured populations of goldfish revealed by RAPD method[J]. Marine Fisheries, (01): 20-24.) [9] 邱楚雯, 王韩信. 2017. 泥鳅属鱼类遗传多样性的研究进展[J]. 水产科技情报, 44(02): 78-82, 86.(Qiu C W, Wang H X, 2017. Advances in research on genetic diversity of Misgurnus[J]. Fisheries Science & Technology Information, 44(02): 78-82, 86.) [10] 曲若竹, 侯林, 吕红丽, 等. 2004. 群体遗传结构中的基因流[J]. 遗传, (03): 377-382. (Qu R Z, Hou L, Lu H L, et al. 2004. The gene flow of population genetic structure[J]. Hereditas, (03): 377-382.) [11] 单磊, 魏开建, 张桂蓉, 等. 2009. 长江中下游二倍体泥鳅4个种群的遗传多样性[J]. 华中农业大学学报, 928(04): 453-458. (Shan L, Wei K J, Zhang G R, et al.2009. Genetic diversity of four diploid loach (Misgurnus anguillicaudatus) populations in the middle and lower Yangtze River Basin[J]. Journal of Huazhong Agricultural University, 928(04): 453-458.) [12] 苏天凤, 熊小飞, 江世贵, 等. 2010. 斑节对虾7个全同胞家系间亲缘关系的微卫星分析[J]. 南方水产, 6(06): 1-7. (Su T F, Xiong X F, Jiang S G, et al.2010. Microsatellite analysis of genetic relationship among 7 full-sib families of Penaeus monodon[J]. South China Fisheries Science, 6(06): 1-7.) [13] 王坤. 2009. 长江流域不同泥鳅群体的分子遗传差异及生长的初步研究[D]. 硕士学位论文, 苏州大学, 导师: 凌去非, pp. 22-23. (Wang K.2009. A primary study on molecular genetic differences and growth of different loach populations in the Yangtze River Basin[D]. Thesis for M.S., Soochow University, Supevisor: Ling Q F, pp. 22-23.) [14] 谢丽, 陈国良, 叶富良, 等. 2009. 凡纳滨对虾4个选育群体遗传多样性的SSR分析[J]. 广东海洋大学学报, 29(04): 5-9. (Xie L, Chen G L, Ye F L, et al.2009. Genetic diversity of four selected stocks of Litopenaeus Vannamei as revealed by SSR marker[J]. Journal of Guangdong University, 29(04): 5-9.) [15] 许绍斌, 陶玉芬, 杨昭庆, 等. 2002. 简单快速的DNA银染和胶保存方法[J]. 遗传, 24(3): 335-336. (Xu S B, Tao Y F, Yang Z Q, et al.2002. A simple and rapid methodsused for silver staining andgel preservation[J]. Hereditas, 24(3): 335-336.) [16] 游翠红, 童金苟, 俞小牧. 2012. 大鳞副泥鳅7个群体遗传变异的微卫星分析[J]. 水生态学杂志, 33(01): 84-91. (You C H, Tong J G, Yu X M.2012. Microsatellite DNA analysis on genetic diversity of seven populations of Paramisgurnus dabryanus[J]. Journal of Hydroecology, 33(01): 84-91.) [17] 叶竹青, 凌去非, 李彩娟, 等. 2015. 5个大鳞副泥鳅家系的遗传结构分析[J]. 水生态学杂志, 36(01): 66-73. (Ye Z Q, Ling Q F, Li C J, et al.2015. Genetic structure analysis of five families of Paramisgurnus dabryanus[J]. Journal of Hydroecology, 36(01): 66-73.) [18] 张桂萍. 2001. 生物多样性现状及其保护[J]. 晋东南师范专科学校学报, (03): 38-40. (Zhang G P. 2001. Status of biodiversity and its protection[J]. Journal of Jindongnan Teachers College, (03): 38-40.) [19] 曾柳根, 甘云飞, 王军花, 等. 2008. 鄱阳湖区泥鳅的微卫星DNA多态性分析[J]. 南昌大学学报, (01): 84-88. (Zeng L G, Gan Y F, Wang J H, et al.2008. Genetic diversity of loaches (Misgurnus anguillicaudatus) from Poyang Lake determined by microsatellites DNA[J]. Journal of Nanchang University, (01): 84-88.) [20] 朱滔, 梁旭方, 彭敏燕, 等. 2013. 翘嘴鳜EST-SSR标记的开发及3个群体遗传多态性分析[J]. 暨南大学学报, 34(03): 347-352. (Zhu T, Liang X F, Peng M Y, et al.2013. Isolation and characterization of polymorphic EST-SSRs markers in three Siniperca chuatsi population[J]. Journal of Jinan University, 34(03): 347-352.) [21] Botstein D, White R L, Skolnick M, et al.1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 32(3): 314-331. [22] Balloux F, Lugon-Moulin N.2002. The estimation of population differentiation with microsatellite markers[J]. Molecular Ecology, 11(2): 155-165. [23] DeWoody J A, Avise J C.2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals[J]. Journal of Fish Biology, 56(3): 461-473. [24] Khan M R, Arai K.2000. Allozyme variation and genetic differentiation in the loach Misgurnus anguillicadatus.[J]. Fisheries Science, 66(2): 211-222. [25] Morishima K, Nakayama I, Arai K.2008. Genetic linkage map of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae)[J]. Genetica, 132(3): 227-241. [26] Nei M, Tajima F, Tateno Y.1983. Accuracy of estimated phylogenetic trees from molecular data[J]. Journal of Molecular Evolution, 19(2): 153-170. [27] Slatkin M.1981. Estimating levels of gene flow in natural populations[J]. Genetics (Print), 99(2): 323-335. [28] Wright.1931. Evolution in mendelian population[J]. Genetics, 16: 97-159. |
[1] |
ZHU Xiao-Feng, XU Hou-Qiang, CHEN Wei, CHEN Ying-Lian, NI Kai, WU Xiao-Min, NI Meng-Meng, LU Xian-Jun. Cloning, Expression and Bioinformatics Analysis of IGF-1 and IGF-2 Genes in Congjiangxiang Pigs (Sus scrofa)[J]. 农业生物技术学报, 2019, 27(8): 1382-1391. |
|
|
|
|