|
|
Effects of FADS2 Interference on Fatty Acid Composition of Mammary Epithelial Cells in Dairy Goats (Capra hircus) |
WU Jiao1, HE Qiu-Ya1, LI Zhuang1, LI Cong1, WANG Hui2, SHI Huai-Ping1, LUO Jun1, * |
1 Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology / College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China;
2 Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization / Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, China |
|
|
Abstract Fatty acid desaturation 2 (FADS2), as a rate-limiting enzyme in the synthesis of polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA) and docosahexaenoic acid (DHA), can dehydrogenate its substrate to form a double bond at the 6~7 position. In this study, FADS2 gene (GenBank No. MK292654), with 1 335 bp length of the CDS and encoding 444 amino acids, was cloned and had high homology with Ovis aries (XM_012146317.2) and Bos taurus (NM_001083444.1). Using siRNA technique in goat mammary epithelial cells (GMECs), the mRNA and protein levels of FADS2 decreased 60%~70% (P<0.01) and 15%~18% (P<0.05), respectively. Interfering FADS2 expression significantly up-regulated the expression of genes related to the synthesis of PUFAs, such as elongase of very long chain fatty acids 2 gene (ELOVL2) (P<0.01), ELOVL6 (P<0.01), fatty acid desaturation 1 gene (FADS1) (P<0.05); It also promoted the expression of sterol regulatory element-binding transcription protein gene (SREBP1a) (P<0.01), fatty acid synthase gene (FASN) (P<0.05), acetyl-CoA carboxylase gene (ACACA) (P<0.05), and stearoyl-CoA desaturase1 gene (SCD1) expression (P<0.05), respectively. In addition, interfering FADS2 expression could significantly decreased the proportion of AA and DHA (P<0.05) and restrained PUFAs synthesis (P<0.05). Furthermore, interfering FADS2 gene expression could significantly inhibit diacylglycerol acyltransferase1 (DGAT1) (P<0.01) and DGAT2 (P<0.05) gene expression to decrease triacylglyceride (TAG) content in GMECs (P<0.05). In conclusion, FADS2 gene plays an important role in regulating PUFAs synthesis and triglyceride metabolism in dairy goats, which provides experimental basis for the study of PUFAs metabolism in goat milk.
|
Received: 18 February 2019
|
|
Corresponding Authors:
luojun@nwsuaf.edu.cn
|
|
|
|
[1] 曹斌云, 罗军, 姚军虎, 等. 2007. 山羊奶的营养价值与特点[J]. 畜牧兽医杂志, 26(1): 49-50.
(Cao B Y, luo J, Yao J H, et al.2007. Nutritional value and characteristics of goat milk[J]. Journal of Animal Science and Veterinary Medicine, 26(1): 49-50.)
[2] 刘莉, 李明春, 胡国武, 等. 2001. 深黄被孢霉M_(6-22) Δ~6-脂肪酸脱氢酶基因在酿酒酵母中的表达[J]. 微生物学报,41(4): 397-401.
(Liu L, Li M C, Hu G W, et al.2001. Identification of mortieralla isabellna M_(6-22)Δ~6-fatty acid desaturaseby heterologous expression in saccharomyces cerevisiae[J]. Acta Microbiologica Sinica, 41(4): 397-401.)
[3] 王苗, 罗军, 许会芬, 等. 2016. 山羊INSIG1基因超表达对乳腺上皮细胞中脂质合成的影响[J]. 畜牧兽医学报, 47(9): 1806-1816.
(Wang M, Luo J, Xu H F, et al.2016. Effect of INSIG1 overexpression on the lipid synthesis in goat mammary gland epithelial cells[J]. Journal of Animal Science and Veterinary Medicine, 47(9): 1806-1816.)
[4] 许会芬, 2016. SREBP-1基因对山羊乳腺上皮细胞脂肪酸代谢的调控作用研究[D]. 博士学位论文, 西北农林科技大学, 导师: 罗军, pp.19-20.
(Xu H F.2016. The Regulation function Of SREBP-1 gene on fatty acid metabolism in goat mammary gland epithelial cells[D]. Thesis for Ph.D., Northwest A & F University, Supervisor: Luo J, pp .19-20.)
[5] 朱江江, 2011. 奶山羊脂肪酸合酶基因乙酰/丙二酸单酰转移酶区域的过表达研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 罗军. pp. 33-34.
(Zhu J J, 2011. Overexpression of MAT domain of fatty acid synthesis (FASN) gene in dairy goat[D]. Thesis for M.S., Northwest A & F University, Supervisor: Luo J, pp. 33-34.)
[6] Aki T, Shimada Y, Inagaki K, et al.1999. Molecular cloning and functional characterization of rat delta-6 fatty acid desaturase[J]. Biochemical & Biophysical Research Communications, 255(3): 575-579.)
[7] Alex S, Lange K, Amolo T, et al.2013. Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ[J]. Molecular & Cellular Biology, 33: 1303-1316.
[8] Ali M, Heyob K, Rogers L K.2016. DHA-mediated regulation of lung cancer cell migration is not directly associated with gelsolin or vimentin expression[J]. Life Sciences, 155: 1-9.
[9] Castro L F, Tocher D R, Monroig O.2016. Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire[J]. Progress in Lipid Research, 62: 25-40.
[10] Cho H P, Nakamura M T, Clarke S D.1999. Cloning, expression, and nutritional regulation of the mammalian delta-6 desaturase[J]. Journal of Biological Chemistry, 274(1): 471-477.
[11] Cunnane S C.2003. Problems with essential fatty acids: Time for a new paradigm?[J]. Progress in Lipid Research, 42(6): 544.
[12] Das U N.2010. Essential fatty acids: Biochemistry, physiology and pathology[J]. Biotechnology Journal, 1(4): 420-439.
[13] de Toro-Martín J, Guénard F, Rudkowska I, et al.2018. A common variant in ARHGEF10 alters delta-6 desaturase activity and influence susceptibility to hypertriglyceridemia[J]. Journal of Clinical Lipidology, 12(2): 311-320.
[14] Deng X, Dong Q, Bridges D, et al.2015. Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP-1c) via activation of AMP-activated kinase[J]. BBA-Molecular and Cell Biology of Lipids, 1851: 1521-1529.
[15] Georgiadi A, Kersten S.2012. Mechanisms of gene regulation by fatty acids[J]. Advances in Nutrition, 3(2): 127-134.
[16] Graziela R R, Maria M B, Tharcisio C T, et al.2015. Docosahexaenoic acid modulates a HER2-associated lipogenic phenotype, induces apoptosis, and increases trastuzumab action in HER2-overexpressing breast carcinoma cells[J]. Biomed Research International, 2015: 1-13.
[17] Guillou H, Zadravec D, Martin P G, et al.2010. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice[J]. Progress in Lipid Research, 49(2): 186-199.
[18] Hammond S M, Boettcher S, Caudy A A, et al .2001. Argonaute2, a link between genetic and biochemical analyses of RNAi[J]. Science, 293: 1146-1150.
[19] Hayashi Y, Shimamura A, Ishikawa T, et al.2018. FADS2 inhibition in essential fatty acid deficiency induces hepatic lipid accumulation via impairment of very low-density lipoprotein (VLDL) secretion[J]. Biochemical & Biophysical Research Communications, 496(2): 549-555.
[20] Heijden R, Sheedfar F, Morrison M C, et al.2015. High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice[J]. Aging, 7(4): 256-267.
[21] Hervé G, Sabine D, Vincent R, et al.2004. Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat delta6-desaturase activity[J]. Journal of Lipid Research, 45: 32-40.
[22] Hwang J K, Yu H N, Noh E M, et al.2017. DHA blocks TPA-induced cell invasion by inhibiting MMP-9 expression via suppression of the PPAR-γ/NF-κB pathway in MCF-7 cells[J]. Oncology Letters, 13: 243-249.
[23] Hyungjae L, Woo J P.2014. Unsaturated fatty acids, desaturases, and human health[J]. Journal of Medicinal Food, 17(2): 189-197.
[24] Ikuyo I, Nozomu K, Yuka A, et al.2014. Identification of genes and pathways involved in the synthesis of Mead acid (20:3n-9), an indicator of essential fatty acid deficiency[J]. Biochim Biophys Acta, 1841: 204-213.
[25] Jin A, Shi X C, Liu Y, Sun J, et al.2018. Docosahexaenoic acid induces PPARγ-dependent preadipocytes apoptosis in grass carp Ctenopharyngodon idella[J]. General & Comparative Endocrinology, 266: 211-219.
[26] Julia A, Ramón R, Videla L A, et al.2004. Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease[J]. Clinical Science, 106(6): 635.
[27] Kazutoshi Y, Eishiro M, Hajime S, et al.2015. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis[J]. Liver International, 35(2): 582-590.
[28] Manuel R R, Stroud C K, Haschek W M, et al.2010. Docosahexaenoic acid supplementation fully restores fertility and spermatogenesis in male delta-6 desaturase-null mice[J]. The Journal of Lipid Research, 51(2): 360-367.
[29] Markiewicz-Kęszycka M, Czyżak-Runowska G, Lipińska P, et al.2013. Fatty acid profile of milk-a review[J]. Bulletin-Veterinary Institute in Pulawy, 57(2): 135-139.
[30] Marsman H A, Graaf W D, Heger M, et al.2013. Hepatic regeneration and functional recovery following partial liver resection in an experimental model of hepatic steatosis treated with omega-3 fatty acids[J]. British Journal of Surgery, 100(5): 674-683.
[31] Meegalla R L, Billheimer J T, Cheng D.2002. Concerted elevation of acyl-coenzyme A: Diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin[J]. Biochemical and Biophysical Research Communications, 298(3): 317-323.
[32] Alferez M J M, Barrionuevo M, Aliaga I L, et al.2001. Digestive utilization of goat and cow milk fat in malabsorption syndrome[J]. Journal of Dairy Research, 68(03): 451-461.
[33] Poulsen L L, Siersbæk M, Mandrup S.2012. PPARs: Fatty acid sensors controlling metabolism[J]. Seminars in Cell & Developmental Biology, 23(6): 631-639.
[34] Qi B, Fraser T, Mugford S, Dobson G, et al.2004. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants[J]. Nature Biotechnology, 22(6): 739-745.
[35] Reddy A S, Nuccio M L, Gross L M, et al.1993. Isolation of a delta 6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120[J]. Plant Molecular Biology, 22(2): 293-300.
[36] Stoffel W, Hammels I, Jenke B, et al.2014. Obesity resistance and deregulation of lipogenesis in Δ6-fatty acid desaturase (FADS2) deficiency[J]. Embo Reports, 15(1): 110-120.
[37] Stoffel W, Holz B, Jenke B, et al.2008. Δ6-desaturase (FADS2) deficiency unveils the role of ω3- and ω6-polyunsaturated fatty acids[J]. The EMBO Journal, 27(17):2281-2292.
[38] Stroud C K, Nara T Y, Manuel R R, et al.2009. Disruption of FADS2 gene in mice impairs male reproduction and causes dermal and intestinal ulceration[J]. The Journal of Lipid Research, 50(9): 1870.
[39] Tsai C H, Shen Y C, Chen H W, et al.2017. Docosahexaenoic acid increases the expression of oxidative stress-induced growth inhibitor 1 through the PI3K/Akt/Nrf2 signaling pathway in breast cancer cells[J]. Food & Chemical Toxicology, 108: 276-288.
[40] Tuschl T.2001. RNA interference and small interfering RNAs[J]. Chembiochem, 2(4): 239-245.
[41] Vaittinen M, Walle P, Kuosmanen E, et al.2015. FADS2 genotype regulates delta-6 desaturase activity and inflammation in human adipose tissue[J]. Journal of Lipid Research, 57(1): 56-65.
[42] Walle P, Takkunen M, Mã Nnistã V,et al.2016. Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity[J]. Metabolism-clinical & Experimental, 65(5): 655-666.
[43] Wallis J G, Watts J L, Browse J.2002. Polyunsaturated fatty acid synthesis: What will they think of next?[J]. Trends in Biochemical Sciences, 27(9): 467-473.
[44] Xu H F, Luo J, Zhao W S, et al.2016. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells[J]. Journal of Dairy Science, 99(1): 783-795. |
|
|
|