|
|
Expression and Distribution of HIF1α and Beclin1 in Adult Yak (Bos grunniens) Brain Tissues |
BAI Zhan-Chun1, CUI Yan1, YU Si-Jiu1,2, Ma Jun-Xing1, HE Jun-Feng1,*, ZHANG Qian1,* |
1 College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
2 Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou 730070, China; |
|
|
Abstract The central nervous system is an important regulatory system for the movement of various organs of the body. And the brain as a major part plays an important role in the animal growth and adaptation to the hypoxic environment. In order to investigate the expression of hypoxia-inducible factor 1α (HIF1α) and homolog of yeast ATG6 Beclin1 and their relationship between the process of hypoxia adaptation of adult yak (Bos grunniens) brain tissues, the expression of HIF1α and Beclin1 mRNA and protein in adult yak brain tissues were detected by qRT-PCR, ELISA and immunohistochemistry (IHC). The results of qRT-PCR and ELISA showed that the mRNA and protein levels of HIF1α and Beclin1 were the highest in adult yak hippocampus, followed by cerebral cortex, corpora quadrigemina, medulla oblongata and cerebellum. Immunohistochemistry staining showed that HIF1α and Beclin1 positive products were mainly distributed in the cytoplasm. And in the cerebral cortex positive products were mostly concentrated in pyramidal cell-like neurons. In hippocampus, they were distributed in the molecular layer, the granular layer and the polymorphic cell layer. Additionally in the corpora quadrigemina and medulla oblongata positive products were concentrated in the neuronal. Moreover, the positive products of HIF1α and Beclin1 were distributed in the cerebellar Purkinje cells, and also presented in a small amount of cells in the granular layer and the molecular layer. The above results suggested that hippocampus and cerebral cortex might be susceptible to hypoxia, and HIF1α might promote Beclin1 expression and improve brain tissues adaptation to hypoxia. But the specific mechanism needs further studying. Therefore, this study provides theoretical basis for further exploration of brain tissues hypoxia adaptation mechanisms.
|
Received: 10 February 2019
|
|
Corresponding Authors:
hejf@gsau.edu.cn; zq880204@126.com
|
|
|
|
1 陈珂. 2017. 牦牛脑p53适应高原低氧的分子机理[D]. 硕士学位论文, 兰州大学, 导师: 邵宝平, pp. 44-48.
(Chen K.2017. Molecular mechanism of yak brain p53 adapting to plateau hypoxia[D]. Thesis for M.S., Lanzhou University, Supervisor: Shao B P, pp. 44-48.)
2 郭向飞, 赵雅宁, 李建民, 等. 2016. 间歇性低氧激活脑缺血大鼠海马区自噬通路并引起学习记忆功能降低[J]. 细胞与分子免疫学杂志, 32(9): 1212-1216.
(Guo X F, Zhao Y N, Li J M, et al.2016. Intermittent hypoxia activates autophagy pathway in hippocampus of rats with cerebral ischemia and causes learning and memory function reduction[J]. Journal of Cellular and Molecular Immunology, 32(9): 1212-1216.)
3 李丽华, 屈艺, 张莉, 等. 2008. HIF-1α表达在新生大鼠缺氧/缺氧缺血性脑损伤神经元凋亡中的作用[J]. 四川大学学报(医学版), 39(6): 912-915.
(Li L H, Qu Y, Zhang L, et al.2008. Role of HIF-1α expression in neuronal apoptosis in hypoxic/hypoxic ischemic brain damage in neonatal rats[J]. Journal of Sichuan University (Medical Science Edition), 39(6): 912-915.)
4 李同方, 刘霞, 孙雪婧. 2015. 脑红蛋白在成年牦牛脑中的表达研究[J]. 西北农林科技大学学报: 自然科学版, 43(6): 1-6.
(Li T F, Liu X, Sun X J.2015. Expression of brain hemoglobin in adult yak brain[J]. Journal of Northwest A&F University: Natural Science Edition, 43(6): 1-6.)
5 刘文倩. 2015. 间歇性低氧对大鼠脑缺血后空间记忆及海马区神经细胞自噬的影响[D]. 硕士学位论文, 华北理工大学, 导师: 赵雅宁, pp. 20-21.
(Liu W Q, 2015. Effects of intermittent hypoxia on spatial memory and autophagy in hippocampus of rats after cerebral ischemia[D]. Thesis for M.S., North China University of Science and Technology, Supervisor: Zhao Y N, pp. 20-21.)
6 吴海琴, 王虎清, 成红学, 等. 2008. 老龄大鼠脑组织不同部位HIF-1α的表达规律探讨[J]. 南方医科大学学报, 28(10): 1897-1899.
(Wu H Q, Wang H Q, Cheng H X, et al.2008. The expression of HIF-1α in different parts of brain tissue of aged rats[J]. Journal of Southern Medical University, 28(10): 1897-1899.)
7 Austin S A, Santhanam A V R, d'Uscio L V, et al.2015. Regional heterogeneity of cerebral microvessels and brain susceptibility to oxidative stress[J]. PLOS ONE, 10(12): e0144062.
8 Bani H S, Braun J, Bernhardt W M, et al.2008. HIF-1 alpha subunit and vasoactive HIF-1-dependent genes are involved in carbon monoxide-induced cerebral hypoxic stress response[J]. European Journal of Applied Physiology, 104(1): 95-102.
9 Chertok V M, Nevzorova V A, Zakharchuk N V.2018. Comparative study of HIF-1α- and HIF-2α-immunopositive neurons and capillaries in rat cortex under conditions of tissue hypoxia[J]. Bulletin of Experimental Biology and Medicine, 165(4): 516-520.
10 Fekadu J, Rami A.2016. Beclin1 deficiency alters autophagosome formation, lysosome biogenesis and enhances neuronal vulnerability of HT22 hippocampal cells[J]. Molecular Neurobiology, 53(8): 5500-5509.
11 Li J, Qi Y, Liu H, et al.2013. Acute high-altitude hypoxic brain injury: Identification of ten differential proteins[J]. Neural Regeneration Research, 8(31): 2932-2941.
12 Lu N, Li X, Tan R, et al.2018. HIF-1α/Beclin1-mediated autophagy is involved in neuroprotection induced by hypoxic preconditioning[J]. Journal of Molecular Neuroscience, 66(2): 238-250.
13 Meng Y, Yong Y, Yang G, et al.2013. Autophagy alleviates neurodegeneration caused by mild impairment of oxidative metabolism[J]. Journal of Neurochemistry, 126(6): 805-818.
14 Mochida K, Oikawa Y, Kimura Y, et al.2015. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus[J]. Nature, 522(7556): 359-362.
15 Qian X, Li X, Cai Q, et al.2017. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy[J]. Molecular Cell, 65(5): 917-931.
16 Rachel Z, Sarah P, Powell F L, et al.2015. Cardiac responses to hypoxia and reoxygenation in Drosophila[J]. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 309(11): 1347-1357.
17 Ravanan P, Srikumar I F, Talwar P.2017. Autophagy: The spotlight for cellular stress responses[J]. Life Sciences,118: 53-67.
18 Roitbak T, Surviladze Z, Cunningham L A.2011. Continuous expression of HIF-1α in neural stem/progenitor cells[J]. Cellular & Molecular Neurobiology, 31(1): 119-133.
19 Shin T.2014. High altitude illnesses in Hawai'i[J]. Hawaii Journal of Medicine & Public Health, 73(11 Suppl 2): 4-6.
20 Song H, Liu S, Li C, et al.2014. Pluronic L64-mediated stable HIF1α expression in muscle for therapeutic angiogenesis in mouse hindlimb ischemia[J]. International Journal of Nanomedicine, 9(1): 3439-3452.
21 Tzeng Y W, Lee L Y, Chao P L, et al.2010. Role of autophagy in protection afforded by hypoxic preconditioning against MPP+-induced neurotoxicity in SH-SY5Y cells[J]. Free Radical Biology & Medicine, 49(5): 839-846.
22 Wei L, Chen Z, Xi Q, et al.2016. Elevated hemoglobin cconcentration affects acute severe head trauma after recovery from surgery of neurological function in the Tibetan plateau[J]. World Neurosurgery, 86(4): 181-185.
23 Meng X, Zhang J, Yin L, et al.2016. Involvement of hypoxia-inducible factor-1α (HIF-1α) in inhibition of benzene on mouse hematopoietic system[J]. Journal of Toxicology & Environmental Health, 79(9-10): 402-406.
24 Xu L, Tang X, Yang Y, et al.2017. Neuroprotective effects of autophagy inhibition on hippocampal glutamate receptor subunits after hypoxiaischemia-induced brain damage in newborn rats[J]. Neural Regeneration Research, 12(3): 417-424.
25 Yang Y, Ju J, Deng M, et al.2017. Hypoxia inducible factor 1α promotes endogenous adaptive response in rat model of chronic cerebral hypoperfusion[J]. International Journal of Molecular Sciences, 18(1): 3-4. |
[1] |
ZHAO Zhi-Dong, TIAN Hong-Shan, JIANG Yan-Yan, SHI Bin-Gang, LIU Xiu, LI Xu-Peng, WANG Deng-Zhe, CHEN Jin-Lin, HU Jiang. Polymorphisms of ACSL1 Gene Promoter and Their Association Analysis with Milk Quality Traits in Yak (Bos grunniens)[J]. 农业生物技术学报, 2019, 27(9): 1596-1603. |
|
|
|
|