|
|
Tissue Expression, Polymorphisms of FABP3 Gene and Its Effect on Carcass and Meat Quality Traits in Yak (Bos grunniens) |
HU Jiang1, CAO Jian1, ZHANG Li2, ZHAO Zhi-Dong1, WANG Ji-Qing1, LIU Xiu1, LI Shao-Bin1, CHEN Jin-Lin3, LUO Yu-Zhu1,* |
1 College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; 2 Life science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; 3 Nagqu Prefecture Grassland Station, Tibet Autonomous Region, Nagqu 852100, China |
|
|
Abstract The heart fatty acid-binding protein (FABP3), which involved in the regulation of fatty acid absorb and intracellular transport, associated with tenderness and juiciness via effecting on intramuscular fat (IMF) content in muscle. In this study, the expressions of FABP3 gene were detected using qRT-PCR in tissues of Gannan yak (Bos grunniens). The variations of FABP3 gene were screened by single strand conformation polymorphism (SSCP) so as to evaluate their effects on carcass and meat quality traits of yak. The results showed that the FABP3 gene expressed in all of 16 tissues investigated and their relative expression level with the order of heart>longissimus dorsi>rectum>ileum>pancreas>jejunum>others tissues in Gannan yak, and that significantly higher expression was detected in heart than other tissues (P<0.05). Seven mutations, including one mutation in 5'-UTR and intron 1 and 5 in intron 2 of FABP3 gene were identified in 4 yak populations. Variations in 5'-UTR-intron 1 had effect on carcass weight, tenderness and cooking meat percentage of Gannan yak (P<0.05). Allele B1 was associated with an extremely significant increase in carcass weight and a decrease in Warner-Bratzler shear force (P<0.01), and allele C1 was associated with a extremely significant decrease in carcass weight and cooking meat percentage (P<0.01). These results enrich the molecular genetic data of meat quality traits of yak.
|
Received: 12 January 2019
|
|
Corresponding Authors:
luoyz@gsau.edu.cn
|
|
|
|
[1] 柴志欣, 王永, 罗晓林, 等. 2013. 麦洼牦牛H-FABP、HSL基因多态性及与生长性状的相关分析[J].中国农业科学, 46(14): 3022-3031. (Chai Z X, Wang Y, Luo X L, et al.2013. Association of single nucleotide polymorphism of H-FABP and HSL genes with growth traits in Maiwa yak[J]. Scientia Agricultura Sinica, 46(14): 3022-3031) [2] 邓龙华, 谢亮, 罗成龙, 等. 2010. 鸡心脏型脂肪酸结合蛋白(H-FABP)基因多态性对肉质性状和组织表达的影响[J]. 农业生物技术学报, 18(3): 545-555. (Deng L H, Xie L, Luo C L, et al.2010. Association of heart fatty acid-binding protein (H-FABP) gene polymorphisms with chicken meat quality trait[J]. Journal of Agricultural Biotechnology, 18(3): 545-555.) [3] 李鹏, 王存堂, 韩玲, 等. 2010. 甘南牦牛肉质特性和营养成分分析[J]. 食品科学, 31(22): 414-416. (Li P, Wang C T, Han L, et al.2010. Analysis of meat quality characteristics and nutrient content in meat of yak from Gannan[J]. Food Science, 31(22): 414-416.) [4] 李武峰, 许尚忠, 曹红鹤, 等. 2004. 3个杂交牛种H-FABP基因第二内含子的遗传变异与肉品质性状的相关分析[J]. 畜牧兽医学报, 35(3): 252-255. (Li W F, Xu S Z, Cao H H, et al.2004. Genetic variation in intron 2 of H-FABP gene in three bovine hybrids and the relationships with meat quality traits[J]. Acta Veterinaria et Zootechnica Sinica, 35(3): 252-255.) [5] 罗献梅, 陈代, 张克英. 2006. 不同品种猪肌肉组织心型脂肪酸结合蛋白基因的表达差异[J]. 畜牧兽医学报, 37(7): 727-730. (Luo X M, Chen D W, Zhang K Y.2006. Porcine H-FABP gene expression in different genotypes and muscular tissues[J]. Acta Veterinaria et Zootechnica Sinica, 37(7): 727-730.) [6] 文力正, 赵玉民, 姜昊, 等. 2008. 草原红牛改良群体H-FABP基因SNP及其与肉质性状的相关分析[J]. 中国畜牧兽医, 35(7): 66-69. (Wen L Z, Zhao Y M, Jiang H, et al.2008. Single nucleltide polymorphism of H-FABP gene and correlation analysis with meat quality traits in Red Steppe crossed herds[J]. China Animal Husbandry & Veterinary Medicine, 35(7): 66-69.) [7] 邢成锋. 2009. 牦牛LPL和H-FABP基因多态与生长发育性状相关性研究[D]. 硕士学位论文, 中国农业科学院. 导师: 闫萍. p.p. 38-40. (Xing C F.Studies on associations between polymorphism of LPL and H-FABP gene and performance of growth and development traits in yaks[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Yan P. pp. 38-40.) [8] 游小燕, 刘益平, 朱庆, 等. 2007. 鸡H-FABP基因多态性及其与屠宰性能的关联分析[J]. 遗传, 29(2): 230-234. (You X Y, Liu Y P, Zhu Q, et al.2007. Study on SNP of the H-FABP gene and its association with slaughter performance in chicken[J]. Hereditas, 29(2): 230-234.) [9] 余刚,罗军,韩雪峰,等. 2007. 陕北白绒山羊H-FABP基因SNPs及其与生长、胴体性状的相关研究[J]. 畜牧兽医学报, 38(11): 1154-1159. (Yu G, Luo J, Han X F, et al.2007. Study on SNPs of H-FABP gene and its relationship with growth and carcass traits in Shanbei White Cashmere goats[J]. Acta Veterinaria et Zootechnica Sinica, 38(11): 1154-1159.) [10] 周国利, 朱奇, 郭善利, 等. 2005. 鲁西黄牛H-FABP基因的多态性及其与肉质性状关系的分析[J]. 西北农业学报, 14(3): 5-7. (Zhou G L, Zhu Q, Guo S L, et al.2005. Analysis on polymorphism of H-FABP gene in Luxi cattle and the relationships with meat quality traits[J]. Acta Agriculturae Boreali-occidentalis Sinica, 14(3): 5-7.) [11] 朱祥云, 杨晓刚, 王杰, 等. 2009. 北京鸭H-FABP多态与屠体性状相关分析[J]. 畜牧兽医学报, 40(5): 664-669. (Zhu X Y, Yang X G, Wang J, et al.2009. Analysis on the association of polymorphism of H-FABP gene with carcass traits of Peking duck[J]. Acta Veterinaria et Zootechnica Sinica, 40(5): 664-669.) [12] Binas B, Dannenberg H, McWhir J, et al.1999. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization[J]. The FASEB Journal, 13(8): 805-812. [13] Blecha I M Z, Siqueira F, Ferreira A B R, et al.2015. Identification and evaluation of polymorphisms in FABP3 and FABP4 in beef cattle[J]. Genetics and Molecular Research, 14(4): 16353-16363. [14] Byun S O, Fang Q, Zhou H,et al.2009. An effective method for silver-staining DNA in large numbers of polyacrylamide gels[J]. Analytical Biochemistry, 385(1): 174-175. [15] Cesar A S M, Regitano L C A, Koltes J E, et al.2015. Putative regulatory factors associated with intramuscular fat content[J]. PLoS One, 10(6): e0128350. [16] Cho K H, Kim M J, Jeon G J, et al.2011. Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig[J]. Molecular Biology Reports, 38(3): 2161-2166. [17] Cho S, Park T S, Yoon D H, et al.2008. Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle[J]. BMB Reports, 41(1): 29-34. [18] Fiems L Q, De Campeneere S, De Smet S, et al.2000. Relationship between fat depots in carcasses of beef bulls and effect on meat colour and tenderness[J]. Meat Science, 56(1): 41-47. [19] Gerbens F, Harders F L, Groenen M A, et al.1998. A dimorphic microsatellite in the porcine H-FABP gene at chromosome 6[J]. Animal Genetics, 29(5): 398-413. [20] Heuckeroth R O, Birkenmeier E H, Levin M S, et al.1987. Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein[J]. Journal of Biological Chemistry, 262(20): 9709-9717. [21] Hocquette J F, Gondret F, Baéza E, et al.2010. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers[J]. Animal, 4(2):303-319. [22] Honikel K O.1998. Reference methods for the assessment of physical characteristics of meat[J]. Meat Science, 49(4): 457-477. [23] Hu J, Zhou H T, Smyth A, et al.2010. Polymorphism of the bovine ADRB3 gene[J]. Molecular Biology Reports, 37(7): 3389-3392. [24] Karlsson A, Enfält A C, Essén-Gustavsson B, et a1.1993. Muscle histochemical and biochemical properties in relation to meat quality during selection for increased lean tissue growth rate in pigs[J]. Journal of Animal Science, 71(4): 930-938. [25] Kusudo T, Hashida Y, Ando F, et al.2016. Asp3Gly polymorphism affects fatty acid-binding protein 3 intracellular stability and subcellular localization[J]. FEBS Letters, 589(18): 2382-2387. [26] Li A, Wu L, Wang X, et al.2016. Tissue expression analysis, cloning and characterization of the 5′-regulatory region of the bovine FABP3 gene[J]. Molecular Biology Reports, 43(9): 991-998. [27] Li B, Zerby H N, Lee K.2007. Heart fatty acid binding protein is upregulated during porcine adipocyte development[J]. Journal of Animal Science, 85(7): 1651-1659. [28] Li X, Kim S W, Choi J S, et al.2010. Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content[J]. Molecular Biological Reports, 37(8): 3931-3939. [29] Liu M, Peng J, Xu D Q, et al.2008. Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in Large White × Meishan F2 pig populations[J]. Biochemical Genetics, 46(12):720-732. [30] Mitsumoto M, Mitsuhashi T, Ozawa S.1992. Influence of slaughter weight, sire, concentrate feeding and muscle on the physical and chemical characteristics in Japanese black beef[J]. Asian-Australasian Journal of Animal Science, 5(4): 629-634. [31] Morgan J B, Savell J W, Hale D S, et al.1991. National beef tenderness survey[J]. Journal of Animal Science, 69(8): 3274-3283. [32] Samulin J, Berget I, Lien S, et al.2008. Differential gene expression of fatty acid binding proteins during porcine adipogenesis[J]. Comparative Biochemistry Physiology B Biochemistry Molecular Biology, 151(2): 147-152. [33] Schaap F G,Vusse G J, Glatz J F.1998. Fatty acid-binding proteins in the heart[J]. Molecular and Cellular Biochemistry, 180(1-2): 43-45. [34] Shearer J, Fueger P T, Rottman J N, et al.2005. Heart-type fatty acid-binding protein reciprocally regulates glucose and fatty acid utilization during exercise[J]. American Journal of Physiology Endocrinology and Metabolism, 288(2): E292-E297. [35] Sweeney T, O' Halloran A M, Hamill R M, et al.2015. Novel variation in the FABP3 promoter and its association with fatness traits in pigs[J]. Meat Science, 100: 32-40. [36] Thompson J M.2004. The effects of marbling on flavour and juciness scores of cooked beef, after adjusting to a constant tenderness[J]. Australian Journal of Experimental Agriculture, 44(7): 645-652. [37] Tramontana S, Bionaz M, Sharma A, et al.2008. Internal controls for quantitative polymerase chain reaction of swine mammary glands during pregnancy and lactation[J]. Journal of Dairy Science, 91(8): 3057-3066. [38] Veerkamp J H, Maatman R G.1995. Cytoplasmic fatty acid binding proteins: Their structure and genes[J]. Progress in Lipid Research, 34(1): 17-25. [39] Veerkamp J H, Peeters R A, Maatman R G.1991. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins[J]. Biochimica et Biophysica Acta-Lipids and Lipid Metabolism, 1081(1):1-24. [40] Wang L, Li L, Jiang J, et al.2015. Molecular characterization and different expression patterns of the FABP gene family during goat skeletal muscle development[J]. Molecular Biology Reports, 42(1): 201-207. [41] Wood J D, Enser M.1997. Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality[J]. British Journal of Nutrition, 78 Suppl 1(1): 49-60. [42] Yi B, Wang J, Wang S, et al.2014. Overexpression of Banna mini-pig inbred line fatty acid binding protein 3 promotes adipogenesis in 3T3-L1 preadipocytes[J]. Cell Biology International, 38(8): 918-923. [43] Zhang Y, Kent J W, Lee A, et al.2013. Fatty acid binding protein 3 (fabp3) is associated with insulin, lipids and cardiovascular phenotypes of the metabolic syndrome through epigenetic modifications in a Northern European family population[J]. BMC Medical Genomics, 2013, 6(1):1-14. [44] Zhou H, Hickford J G, Fang Q.2006. A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification[J]. Analytical Biochemistry, 354(1): 159-161. |
[1] |
ZHAO Zhi-Dong, TIAN Hong-Shan, JIANG Yan-Yan, SHI Bin-Gang, LIU Xiu, LI Xu-Peng, WANG Deng-Zhe, CHEN Jin-Lin, HU Jiang. Polymorphisms of ACSL1 Gene Promoter and Their Association Analysis with Milk Quality Traits in Yak (Bos grunniens)[J]. 农业生物技术学报, 2019, 27(9): 1596-1603. |
|
|
|
|