|
|
Advances in Tobacco (Nicotiana tabacum) microRNA Regulation of Stress Response and Growth |
ZHU Zhi-Wei, ZHANG Lu-Xiang, ZHANG Yi-Jie, DING Dan-Yang, ZHANG Huan-Wei, CHEN Si-Ang, LU Yu-Tong, SHAO Hui-Fang* |
College of Tobacco, Henan Agricultural University, Zhengzhou 450002, China |
|
|
Abstract MicroRNA (miRNA) are a class of non-coding small RNAs of about 20~24 nucleotides in length that are produced in vivo, and play an important role in plant growth and development, biotic and abiotic stress responses. As a sessile growth plant, tobacco (Nicotiana tabacum) cannot be moved like an animal to obtain the energy needed for growth and development and to avoid adverse environmental factors. Therefore, it is necessary to have its own special physiological mechanisms such as: Initiation of control of key gene expression related to chlorophyll to promote growth and development, initiation of defense-related key gene expression in response to stress, and many miRNA participate in related processes. Recent studies have shown that many biological processes in plants are regulated by miRNA, including cell maintenance and differentiation, growth and development, signal transduction, and response to environmental stress. The expression level of plant miRNA changes with environmental factors. By regulating the expression of their corresponding target genes, miRNA can make plants adapt to the environment both physiologically and morphologically. In this paper, recent advances in miRNA-mediated tobacco stress response to drought, salt, nutrients, temperature and disease stress, as well as tobacco growth and development, The mechanism and prospects for future research on tobacco miRNA.
|
Received: 15 June 2018
|
|
Corresponding Authors:
* , shf.email@163.com
|
|
|
|
[1] 冯圣军. 2014. MIRNA156凋控烟草发阶段转变的功能研究[D]. 硕士学位论文, 浙江农林大学, 导师: 王华森, pp. 41-43. (Feng S J.2014. MIRNA156 control of tobacco transformation stage function[D]. Thesis for M.S., Zhejiang Agriculture and Forestry University, Supervisor: Wang H S, pp. 41-43.) [2] 顾冕, 孟大千, 徐国华. 2006. 烟草microRNA827 及其靶基因的鉴定与分析[J]. 南京农业大学学报, 39(6): 965-972. (Gu M, Meng D Q, Xu G H.2006. Identification and expression analysis of tobacco microRNA827 and their target genes[J]. Journal of Nanjing Agricultural University, 39(6): 965-972.) [3] 贺晓丽, 刘萍, 栾雨时. 2015. 番茄MIR398基因的克隆及其在烟草中的表达分析[J]. 植物生理学报, 51(12): 2163-2168. (He X L, Liu P, Luan Y S.Cloning of tomato MIR398 gene and its expression in tobacco[J]. Plant Physiology Journal, 51(12): 2163-2168.) [4] 李超, 沙爱华. 2016. 过量表达大豆MIR319基因提高烟草的低磷耐受性[J]. 中国油料作物学报, 38(2): 167-171. (Li C, Sha A H.2016. Overexpression of GmMIR319 in tobacco improving tolerance to phosphorus deficiency[J]. Chinese Journal of Oil Crop Sciences, 38(2): 167-171.) [5] 李凌, 张磊, 晁江涛, 等. 2014. 基于基因组的绒毛状烟草和林烟草 microRNA 及其靶基因分析[J]. 中国农业科学, 47(10): 1894-1903. (Li L, Zhang L, Cao J T, et al.2014. The Genome-wide analysis of microRNAs and their target genes in Nicotiana tomentosiformis and Nicotiana sylvestris[J]. Scientia Agricultura Sinica, 47(10): 1894-1903.) [6] 熊伟姣, 王亚伦, 姚绍嫦. 2018. MicroRNA在高等植物逆境响应中的作用机制研究进展[J]. 作物杂志, (1): 1-8. (Xiong W J, Wang Y L, Yao S C.2018. Progress in studying mechanism of microRNA in stress response in higher plants[J]. Bulletin of Crops.) [7] 于力, 阎君, 张一鸣, 等. 2015. 异源表达番茄LeMPK3基因提高烟草的抗低温胁迫能力[J]. 植物生理学报, 51(1): 79~87. (Yu L, Yan J, Zhang Y M, et al.2015. Allelopathic expression of tomato LeMPK3 gene increased tobacco resistance to low temperature stress[J]. Plant Physiology Journal, 51(1): 79~87.) [8] 詹琳琳. 2015. 烟草抗马铃薯Y病毒miRNA的筛选及相关miRNA的功能分析[D]. 硕士学位论文,浙江农林大学, 导师:武晓云, pp. 25-38. (Zhan L L.2015. Screening of tobacco against Potato Y virus miRNA and functional analysis of related miRNAs[D]. Master's thesis, Zhejiang Agriculture and Forestry University, Supervisor: Wu X Y, pp. 25-38.) [9] 张力, 沙爱华. 2016. 烟草microRNA171c 的功能分析[J]. 植物科学学报, 34(5) : 775-780. (Zhang L, Sha A H.2016. Functional analysis of microRNA171c in tobacco[J]. Plant Science Journal, 34(5) : 775-780.) [10] 赵连丰, 宋佳晟, 周树堂. 2015. MicroRNA在昆虫变态及生殖过程中的调控作用[J]. 昆虫学报, 58(01): 90-98. (Zhao L F, Song J C, Zhou S T.2015. MicroRNAs in insect metamorphosis and reproduction[J]. Acta Entomologica Sinica, 58(01): 90-98.) [11] 赵文婷, 高志辉, 孟冬, 等. 2014. 植物microRNA功能瞬时验证体系的建立[J]. 生物技术通讯, 25(01), 71-75. (Zhao W T, Gao Z H, Meng D, et al.2014. Construction of the in vivo validation systems of plant microRNA functions[J]. Biotechnology Communication, 25(01). 71-75.) [12] 周芳名, 白志川, 卢善发. 2013. 药用植物microRNA[J]. 中草药, 44(2): 232-237. (Zhou F M, Bai Z C, Lu S F.2013. MicroRNA in medicinal plants[J]. Chinese Traditional and Herbal Drugs, 44(2): 232-237.) [13] Aditi A, Vijayalakshmi R, Vanga S R.2015. Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: An alternative to Bt-toxin technology[J]. Transgenic Research, 24: 791-801. [14] Akhtar M M, Micolucci L, Islam M S.2016. Bioinformatic tools for microRNA dissection[J]. Nucleic Acids Research, 44(1): 24-44. [15] Andrianovn V, Borisjuk N, Pogrebnyak N, Brinker A, et al.2009. Tobacco as a production platform for biofuel: Overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass[J]. Plant Biotechnology Journal, 8, 277-287. [16] Aukerman M J, Sakai H.2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes[J]. The Plant Cell, 15(11): 2730-2741. [17] Axtell, M J, Bartel D P.2005. Antiquity of micro RNAs and their targets in land plants[J]. Plant Cell, 17(6): 1658-1673. [18] Bai Y, Yuan L.2011. Flavonoid-related basic helix-loop-helix regulators, Ntanl a and Ntanlb, of tobacco have originated from two ancestors and are functionally active[J]. Planta, 234: 363-375. [19] Bao N, Lye K W, Barton M K.2004. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome[J]. Developmental Cell, 7(5): 653-662. [20] Bartel D P.2009. MicroRNAs: Target recognition and regulatory functions[J]. Cell, 136: 215-233. [21] Baxter A, Mittler R, Suzuki N.2014. ROS as key players in plant stress signaling[J]. Journal of Experimental Botany, 65(5): 1229-1240. [22] Bazzini A A, Hopp H E, Beachy R N.2007. Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development[J]. Proceedings of the National Academy of Sciences of the USA, 104(29): 12157-12162. [23] Bukhari S A H, Shang S, Zhang M, et al.2015. Genome-wide identification of chromium stress-responsive micro RNAs and their target genes in tobacco (Nicotiana tabacum) roots, environmental toxicology and chemistry[J]. Environmental Toxicology and Chemistry, 34(11): 2573-2582. [24] Caitlin E, Burklew, Xie F U.2014. Expression of microRNAs and their targets regulates floral development in tobacco (Nicotiana tabacum)[J]. Functional & Integrative Genomics, 14: 299-306. [25] Chen L, Luan Y, Zhai J.2015. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco[J]. Plant Cell Reports, 34: 2013-2025. [26] Chen Q, Meng L, Zhongchun Z, et al.2017. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco[J]. BMC Genomics, 18(1): 62. [27] Chen X.2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 303(5666): 2022-2025. [28] Chen Z H, Bao M L, Sun Y Z, et al. 2011. Regulation of auxin response by miR393-targeted is involved in normal development in Arabidopsis[J]. Plant Molecular Biology, 77(6): 619-629. [29] Dewey R E, Xie J.2013. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum[J]. Phytochemistry, 94: 10-27. [30] Ding Y, Ma Y, Liu N, et al.2017. MicroRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum)[J]. Plant Journal for Cell & Molecular Biology, 91(6): 977-994. [31] Franco-Zorrilla J M, Valli A, Todesco M, et al.2007. Target mimicry provides a new mechanism for regulation of miRNA activity[J]. Nature Genetices, 39(8): 1033-1037. [32] Gandikota M, Birkenbihl R P, Höhmann S.2007. The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. Plant Journal, 49(4): 683-693. [33] Gao J, Yin F, Liu M, et al.2015. Identification and characterisation of tobacco microRNA transcriptome using high-throughput sequencing[J]. Plant Biology, 17(3): 591-598. [34] Gavilano L B, Coleman N P, Bowen S W.2007. Functional analysis of nicotine demethylase genes reveals insights into the evolution of modern tobacco[J]. Journal of Biological Chemistry, 282: 249-256. [35] German M A, Pillay M, Jeong D H.2008. Global identification of micro RNA-target RNA pairs by parallel analysis of RNA ends[J]. Nature Biotechnology, 26(8): 941-946. [36] Golldack D, Li C, Mohan H, Probst N.2014. Tolerance to drought and salt stress in plants: unraveling the signaling networks[J]. Frontiers in Plant Science, 22(5): 151. [37] Guo H, Kan Y, Liu W.2011. Differential expression of miRNAs in response to topping in flue-cured tobacco (Nicotiana tabacum) roots[J]. PLoS One, 6(12): e28565. [38] He H, Liang G, Li Y, et al.2014. Two young microRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of Glucosinolate synthesis in Arabidopsis thaliana[J]. Plant Physiology, 164(2): 853-865. [39] Iglesias M J, Terrile M C, Windels D, et al. 2014. miR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis[J]. PLoS One, 9(9): 107678. [40] Jung J H, Seo Y H, Seo P J, et al.2007. The GIGANTEA-regulated MicroRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. The Plant Cell, 2007, 19:2736-2748. [41] Kidner C A, Martienssen R A.2004. Spatially restricted microRNA directs leaf polarity through ARGONAUTE[J]. Nature, 42(86978): 81-84. [42] Kim S, An C S, Hong Y N, et al.2004. Cold-inducible transcription factor, CaCBF, is associated with a homeodomain leucine zipper protein in hot pepper (Capsicum annuum L.)[J]. Molecules & Cells, 18: 300-308. [43] Kong W, Zhao J J, He L L, et al.2009. Strategies for profiling microRNA expression[J]. Journal of Cellular Physiology, 218(1): 22-25. [44] Kurihara Y, Takashi Y, Watanabe Y.2006. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis[J]. Rna-A Publication of the Rna Society, 12(2): 206-212. [45] Lee Y, Kim M, Han J, et al.2004. MicroRNA genes are transcribed by RNA polymerase II[J]. Embo Journal, 23(20): 4051-4060. [46] Le X, Yugang H, Ying C, et al.2018. An expression atlas of miRNAs in Arabidopsis thaliana[J]. Science China Life Sciences. 2: 178-89. [47] Liang G, Yang F X, Yu D Q.2010. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana[J]. The Plant Journal, 62(6): 1046-1057. [48] Llave C, Xie Z X, Carrington J C.2002. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 297(5589): 2053-2056. [49] Mallory A C, Dugas D V, Bartel D P.2004. MicorRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs[J]. Current Biology, 14(12): 1035~1046. [50] Miska E A.2005. How microRNAs control cell division, differentiation and death[J]. Current Opinion in Genetics & Development , 15(5): 563-568. [51] Niu Q W, Lin S S, et al.2006. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance[J]. Nature Biotechnology, 24(11): 1420-1428. [52] Ossowski S, Schwab R, Weigel D, et al.2008. Gene silencing in plants using artificial microRNAs and other small RNAs[J]. Plant Journal, 53(4): 674-690. [53] Park M Y, Wu G, Gonzalez-Sulser A.2005. Nuclear processing and export of microRNAs in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA, 102(10): 3691-3696. [54] Park W, Zhai JX, Lee JY.2009. Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes[J]. Plant Cell Reports, (3): 469-480. [55] Peragine A, Yoshikawa M, Wu G. 2004. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis[J]. Genes & Development, 18 (19): 2368~2379. [56] Qu J, Ye J, Fang R.2007. Artificial microRNA-mediated virus resistance in plants[J]. Journal of Virology, 81(12): 6690-6699. [57] Sailaja B, Voleti S R, Subrahmanyam D, et al. 2014. Prediction and expression analysis of miRNAs associated with heat stress in Oryza sativa[J]. Rice Science, 21(1): 3-12. [58] Sandeep K V, Ashok K D, Mano K P, et al.2018. Engineered nanomaterials for plant growth and development: A perspective analysis[J]. Science of the Total Environment, 630, 1413-143. [59] Shinozaki K, Yamaguchi-Shinozaki K.2007. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 58(2) : 221-227. [60] Siddiqi K S, Huse A.2016. Engineered gold nanoparticles and plant adaptation potential[J]. Nanoscale Research Letters, 11: 400. [61] Sinclair S J, Murphy K J, Birch C D. 2000. Molecular characterization of quinolinate phosphoribosyl ltransferase (QPRTase) in Nicotiana[J], Plant Molecular Biology, 44: 603-617. [62] Song L, Han M H, Lesicka J, et al.2007. Arabidopsis primary microrna processing proteins HYL1 and DCL1 define a nuclear body distinct from the cajal body[J]. Proceedings of the National Academy of Science of the USA, 104(13): 5437-5442. [63] Sunkar R, Zhu J K.2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. The Plant Cell, 16(8), 2001-2019. [64] Tagami Y, N inaba, N kutsuna.2007. Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus[J]. DNA Research An International Journal for Rapid Publication of Reports on Genes & Genomes, 14, 227-233. [65] Thiebaut F, Grativol C, Hemerly A S.2015. MicroRNA networks in plant-microorganism interactions[J]. Tropical Plant Biology, l8(1): 40-50. [66] Voinnet O.2009. Biogenesis and activity of plant microRNAs[J]. Cell, 136(4): 669-687. [67] Vu T V, Roy C N, et al.2012. Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection[J]. Virus Research , 172(1): 35-45. [68] Wang Y, Wang L, Zou Y.2014. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation[J]. Plant Cell, 26: 4728-4801. [69] Wang L, Zeng H Q, Song J, et al.2015. MiRNA778 and SUVH6, are involved in phosphate homeostasis in Arabidopsis[J]. Plant Science. 238(1): 273-285. [70] Xie F L, Jones D C, Wang Q L.2015. Small RNA sequencing identifies miRNA roles in ovule and fibre development[J]. Plant Biotechnology Journal, 13(3): 355-369. [71] Xie J, Long F.2016. Nicotine biosynthesis is regulated by two more layers: Small and long non-protein-coding RNAs[J]. Plant Signaling & Behavior, 11(6): e1184811. [72] Xia K F, Wang R, Ou X J.2012. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice[J]. PLoS One, 7(1): e30039. [73] Yin F, Gao J, Liu M, et al.2014. Genome-wide analysis of water-stress-responsive microRNA expression profile in tobacco roots[J]. Functional & Integrative Genomics, 14: 319-332. [74] Yin F, Qin C, Gao J.2013. Genome-wide identification and analysis of drought-responsive genes and microRNAs in tobacco[J]. International Journal of Molecular Sciences, 16(3): 5714-5740. [75] Zhang B, Wang Q, Pan X.2007. MicroRNAs and their regulatory roles in animals and plants[J]. Journal of Cellular Physiology, 210(2): 279-289. [76] Zhang, B H, Cannon C H, Cobb G P.2006. Conservation and divergence of plant micro RNA genes[J], Plant Journal for Cell & Molecular Biology, 46(2): 243-259. [77] Zhao M, Ding H, Zhu J K, et al.2011. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis[J]. New Phytologist, 2011, 190(4): 906-915. |
|
|
|