PCR-LFS-Based Rapid Detection Technology for CRISPR/Cas9 Gene-editing Elements and Its Application in Transgenic Crop Monitoring
GAO Jie-Yu1, DING Liu1, KONG Wei-Heng2, YOU Zheng-He1, LI Yun-Fei1, ZONG Kai1, SUN Juan-Juan1, YU Hua-Zheng1, HU Kang-Di3, HAN Fang1, ZENG De-Xin1,*, YU Xiao-Feng1,*
1 Technical Center of Hefei Customs/Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Hefei 230022, China; 2 Science and Technology Research Center of China Customs, Beijing 100026, China; 3 School of Food and Biological engineering, Hefei University of Technology, Hefei 230601, China
Abstract:The widespread application of CRISPR/Cas9 gene editing technology in crop breeding has demonstrated significant potential for improving crop resistance, yield, and quality. However, this progress has also heightened the need for effective detection of gene-edited components. A significant number of crop samples containing non-excised exogenous CRISPR/Cas9 elements remain prevalent during early breeding stages and under specific conditions. However, existing detection methods are associated with limitations such as low sensitivity, time-consuming procedures, or dependence on sophisticated instrumentation. To meet the growing demand for rapid detection of CRISPR/Cas9-edited crops, a highly sensitive method integrating PCR with lateral flow strips (PCR-LFS) was developed in this study. Cas9-specific primers were designed and the amplification system was optimized, allowing rapid visual detection using colloidal gold-labeled test strips. A detection limit of 0.012% (by mass fraction) and sensitivity of 17.5 copies/μL were achieved, outperforming conventional PCR-capillary gel electrophoresis (0.1%) and quantitative PCR (1.75×104 copies/μL). Specificity testing confirmed that Cas9-positive tomato (Solanum lycopersicum) samples were accurately distinguished from non-transgenic crops without cross-reactivity. Practical validation demonstrated that reliable detection was achieved in mixed samples at a ratio of 1∶213, with high repeatability and stability. Compared with traditional techniques, this method eliminated the need for complex instruments, reduced detection time to 3 h, and was suitable for on-site screening and port inspections. It was suggested that future optimization of primer design and LFS procedures might extend the application to other gene-edited components. This study provides strong technical support for precise monitoring of genetically modified crops.
[1] 高威芳, 章礼平, 朱鹏. 2020. 等温扩增技术及其结合CRISPR在微生物快速检测中的研究进展[J]. 生物技术通报, 36(05): 22-31. (Gao W F, Zhang L P, Zhu P.2020. Recent progress on isothermal amplification technology and its combination with CRISPR in rapid detection of microorganisms[J]. Biotechnology Bulletin, 36(5): 22-31.) [2] 贺昕, 熊晓东, 梁敬博, 等. 2005. 免疫检测用纳米胶体金的制备及粒径控制[J]. 稀有金属, 29(04): 471-474. (He X, Xiong X D, Liang J B, et al.2005. Preparation of colloidal gold used in immunoassay and control of particle size[J]. Chinese Journal of Rare Metals, 29(04): 471-474.) [3] 李佳洁, 李楠, 罗浪. 2016. 风险认知维度下对我国食品安全系统性风险的再认识[J]. 食品科学, 37(9): 6. (Li J J, Li N, Luo L.2016. Reconsideration of food safety systemic risks in China from the perspective of risk cognition dimensions[J]. Food Science, 37(9): 6.) [4] 刘旭霞, 余桢. 2007. 转基因农作物产业化法律问题研究[J]. 华中农业大学学报:社会科学版, (03):109-114. (Liu X X, Yu Z. 2007. Study on legal matters of industrialization of genetically modified crops[J]. Journal of Huazhong Agricultural University, (03):109-114.) [5] 刘耀光, 李构思, 张雅玲, 等. 2019. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 40(5): 38-49. (Liu Y G, Li G S, Zhang Y L, et al.2019. Current advances on CRISPR/Cas genome editing technologies in plants[J]. Journal of South China Agricultural University, 40(5): 38-49.) [6] 娄茜棋, 梁燕. 2024. 过表达SlCCD1A基因调控番茄风味品质[J]. 食品科学, 45(2): 97-103. (Lou Q Q, Meng L Z, Zhang Q H, et al.2024. Overexpression of the gene encoding Solanum lycopersicum carotenoid cleavage dioxygenase 1A (SlCCD1A) regulates tomato flavor quality[J]. Food Science, 45(2): 97-103.) [7] 权莹, 张晓娟, 赵辉, 等. 2022. CRISPER/Cas9系统在植物基因组定点修饰及作物遗传育种中的应用研究进展[J]. 中国农学通报, 38(26): 9-14. (Quan Y, Zhang X J, Zhao H, et al.2022. CRISPER/Cas9 system in plant genome modification and crop genetics and breeding: Research progress[J]. Chinese Agricultural Science Bulletin, 38(26): 9-14.) [8] 沈春修, 却志群, 刘莹, 等. 2018. CRISPR/Cas9定点编辑水稻LOC_Os05g31750基因位点及靶修饰位点遗传稳定性研究[J]. 核农学报, 32(06): 1041-1049. (Shen C Q, Que Z Q, Liu Y, et al.2018. Study on hereditary stability of the LOC_Os05g31750 locus via CRISPR/ Cas9-mediated genome editing in rice[J]. Journal of Nuclear Agricultural Sciences, 32(06): 1041-1049.) [9] 宋丽杰, 王丽, 王捷. 2015. CRISPR/Cas9: 一种新型的基因组定点编辑技术[J]. 生命科学研究, 19(3): 276-282. (Song L J, Wang L, Wang J.2015. CRISPR/Cas9: A novel technology of genome editing[J]. Life Science Research, 19(3): 276-282.) [10] 涂芸萍, 杨殿龙, 张中平, 等. 2022. 基于微流控芯片的等温扩增技术[J]. 生物工程学报, 38(03): 943-960. (Tu Y P, Yang D L, Zhang Z P, et al.2022. Isothermal amplification technology based on microfluidic chip[J]. Chinese Journal of Biotechnology, 38(03): 943-960.) [11] 王国莉, 丘裕雄, 范红英. 2015. 转基因玉米实验室PCR检测体系的优化及应用[J]. 基因组学与应用生物学, 8: 6. (Wang G L, Qiu Y X, Fan H Y.2015. Establishment and application of PCR detection system of genetically modified maize in laboratory[J]. Genomics and Applied Biology, 8: 6.) [12] 吴青, 孙远明. 2001. 基因工程技术在食品品质改良中的应用[J]. 生物技术通报, (5): 13-15. (Wu Q, Sun Y M. 2001. Application of genetic engineering technology in modification of edible quality and processing properties of food[J]. Biotechnology Bulletin, (5): 13-15.) [13] 幸宇云, 杨强, 任军. 2016. CRISPR/Cas9基因组编辑技术在农业动物中的应用[J]. 遗传, 38(3): 217-226. (Xing Y Y, Yang Q, Ren J.2016. Application of CRISPR/Cas9 mediated genome editing in farm animals[J]. Hereditas, 38(3): 217-226.) [14] 殷文晶, 陈振概, 黄佳慧, 等. 2023. 基于CRISPR-Cas9基因编辑技术在作物中的应用[J]. 生物工程学报, 39(2): 399-424. (Yin W J, Chen Z G, Huang J H, et al.2023. Application of CRISPR-Cas9 gene editing technology in crop breeding[J]. Chinese Journal of Biotechnology, 39(2): 399-424.) [15] 周金伟, 徐绮嫔, 姚婧, 等. 2015. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用[J]. 遗传, 37(10): 1011-1020. (Zhou J W, Xu Y P, Yao J, et al.2015. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals[J]. Hereditas, 37(10): 1011-1020.) [16] Adhikari P, Poudel M.2020. CRISPR-Cas9 in agriculture: Approaches, applications, future perspectives, and associated challenges[J]. Malaysian Journal of Halal Research, 3(1): 6-16. [17] Bawa A S, Anilakumar K R.2013. Genetically modified foods: Safety, risks and public concerns—a review[J]. Journal of Food Science & Technology, 50(6): 1035-1046. [18] Cox D B T, Platt R J, Zhang F.2015. Therapeutic genome editing: Prospects and challenges[J]. Nature Medicine, 21(2): 121-131. [19] Fan Z, Mu Y, Li K, et al.2022. Safety evaluation of transgenic and genome-edited food animals[J]. Trends in Biotechnology, 40(4): 371-373. [20] Fokkema J, Fermie J, Liv N, et al.2018. Fluorescently labelled silica coated gold nanoparticles as fiducial markers for correlative light and electron microscopy[J]. Scientific Reports, 8(1): 13625. [21] Gao J, Song W, Tang X, et al.2024a. Feruloyl glyceride mitigates tomato postharvest rot by inhibiting Penicillium expansum spore germination and enhancing suberin accumulation[J]. Foods, 13(8): 1147. [22] Gao J, Tang X, Yu X, et al.2024b. Overexpression of Solanum lycopersicum ddb1 interacting protein 4 (SlDDI4) extends tomato shelf life by methylation-mediated suppression of softening-related genes expression[J]. Postharvest Biology and Technology, 216: 113040. [23] Ishibashi A, Saga K, Hisatomi Y, et al.2020. A simple method using CRISPR-Cas9 to knock-out genes in murine cancerous cell lines[J]. Scientific Reports, 10(1): 22345. [24] Jayaraman K S.2001. Illegal Bt cotton in india haunts regulators[J]. Nature Biotechnology, 19(12): 1090. [25] Li S, Lin G, Wen H, et al.2024. Knock-in of exogenous sequences based on CRISPR/Cas9 targeting autosomal genes and sex chromosomes in the diamondback moth, Plutella xylostella[J]. Journal of Integrative Agriculture, 23(9): 3089-3103. [26] Ma X, Zhang Q, Zhu Q, et al.2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 8(8): 1274-1284. [27] Mock U, Hauber I, Fehse B.2016. Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases[J]. Nature Protocols, 11(3): 598-615. [28] Mustafa M I, Makhawi A M.2021. Sherlock and detectr: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases[J]. Journal of Clinical Microbiology, 59(3): e00745-00720. [29] Nandula V.2019. Herbicide resistance traits in maize and soybean: Current status and future outlook[J]. Plants, 8(9): 337. [30] Niu Q, Xie H, Cao X, et al.2024. Engineering soybean with high levels of herbicide resistance with a Cas12-SF01-based cytosine base editor[J]. Plant Biotechnology Journal, 22(9): 2435-2437. [31] Perry E D, Ciliberto F, Hennessy D A, et al.2016. Genetically engineered crops and pesticide use in U.S. maize and soybeans[J]. Science Advances, 2(8): e1600850. [32] Raman R.2017. The impact of genetically modified (GM) crops in modern agriculture: A review[J]. GM Crops & Food, 8(4): 195-208. [33] Sadhu S, Dhali A, Koyel K.2025. Golden rice: A sustainable solution to combat vitamin a deficiency and global malnutrition[J]. Madras Agricultural Journal, 111: 57-61. [34] Sun G, Zhang D, Zhang R, et al.2016. Bt protein expression in the transgenic insect-resistant cotton in China[J]. Science Bulletin, 61(20): 1555-1557. [35] Wang H, Wu Q, Zhou M, et al.2022. Development of a CRISPR/Cas9-integrated lateral flow strip for rapid and accurate detection of Salmonella[J]. Food Control, 142(1): 109203. [36] Wang Q, Zhang B, Xu X, et al.2018. CRISPR-typing PCR (ctPCR), a new Cas9-based DNA detection method[J]. Scientific Reports, 8(1): 14126-14139. [37] Zhang B H.2013. Transgenic cotton: From biotransformation methods to agricultural application[J]. Methods in Molecular Biology, 1902(1): 3-16. [38] Zhang C, Wohlhueter R, Zhang H.2016. Genetically modified foods: A critical review of their promise and problems[J]. Food Science and Human Wellness, 5(3): 116-123. [39] Zhu H, Li C, Gao C.2020. Applications of CRISPR-Cas in agriculture and plant biotechnology[J]. Nature Reviews Molecular Cell Biology, 21(11): 661-677. [40] Zhu R, Jiang H, Li C, et al.2023. CRISPR/Cas9-based point-of-care lateral flow biosensor with improved performance for rapid and robust detection of Mycoplasma pneumonia[J]. Analytica Chimica Acta, 1257: 341175. [41] Zeigler R S.2014. Biofortification: Vitamin a deficiency and the case for golden rice[C]//R. S. ZEIGLER. Plant biotechnology: Experience and future prospects. Cham:Springer International Publishing, pp. 245-262.