Study on the Colonization of Rhizoctonia cerealis in Wheat (Triticum aestvum) Using GFP Labeled Strains
ZHANG Jing-Jing, FU Jia-Jia, LIU Na, HAN Sheng-Fang, HOU Chun-Yan, WANG Dong-Mei*
State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology/College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
Abstract:As a common soil-borne fungal disease, wheat sharp eyespot has emerged as a crucial factor constraining wheat (Triticum aestvum) yield. In this study, a polyethylene glycol (PEG)-mediated genetic transformation system was employed to transform green fluorescent protein (GFP) into Rhizoctonia cerealis and obtained a transformant that was genetically stable; The GFP-labeled R. cerealis was inoculated to wheat seedlings, and the colonization pattern of R. cerealis in wheat was investigated by section observation. It was found that positive transformants were attained by PEG-mediated transformation onto protoplasts and screened in PDA medium containing 100 mg/mL hygromycin. PCR detection and fluorescence observation indicated that the plasmid carrying GFP had been successfully transfected into the R. cerealis. After successive passaging culture, the positive transformants were able to express stably and their pathogenicity was consistent with that of the wild type. On the fourth day after inoculating the transformants to wheat, distinct fluorescence could be observed in the xylem of the wheat root, and on the seventh day, a fluorescence phenomenon emerged in the phloem of the wheat coleoptile. This experiment successfully obtained R. cerealis with GFP labeling which could be stably inherited and preliminarily elucidated the colonization pattern of R. cerealis in wheat, it provide theoretical basis for further in-depth research on the pathogenic mechanism of R. cerealis and the use of microbial fertilizers to control wheat sharp eyespot.
张敬敬, 付佳佳, 刘娜, 韩胜芳, 侯春燕, 王冬梅. 利用GFP标记菌株研究禾谷丝核菌在小麦中的定殖[J]. 农业生物技术学报, 2025, 33(10): 2224-2232.
ZHANG Jing-Jing, FU Jia-Jia, LIU Na, HAN Sheng-Fang, HOU Chun-Yan, WANG Dong-Mei. Study on the Colonization of Rhizoctonia cerealis in Wheat (Triticum aestvum) Using GFP Labeled Strains. 农业生物技术学报, 2025, 33(10): 2224-2232.
[1] 陈浩梁. 2011. 小麦纹枯病的发生与危害探析[J]. 农业灾害研究, 1(02): 7-12. (Chen H L.2011. Analysis on occurrence and damage of wheat sheath blight[J]. Journal of Agricultural Catastrophology, 1(02): 7-12.) [2] 陈丽婷, 施柳, 欧阳建萍, 等. 2023. 油茶根系内生真菌染色方法探究[J]. 生物灾害科学, 46(02): 192-202. (Chen L T, Shi L, OuYang J P, et al.2023. The investigation of staining methods for endophytic fungi in Camellia oleifera roots[J]. Biological Disaster Science, 46(02): 192-202.) [3] 冯艳. 2023. 豫北地区小麦纹枯病的发生规律与防治措施[J]. 河南农业, 636(04):27. (Feng Y. 2023. Occurrence patterns and control measures of wheat sheath blight in northern henan region[J]. Agriculture of Henan, 636(04):27.) [4] 高芸. 2021.生防芽孢杆菌及假单胞菌拮抗植物微生物病害研究进展[J]. 北方园艺, 473(02): 131-136. (Gao Y.2021. Research progress in biocontrol of plant microbial diseases by Bacillus and Pseudomonas[J]. Northern Horticulture, 473(02): 131-136.) [5] 胡景梅. 2023. 小麦纹枯病的发生原因与防治方法[J]. 种子科技, 41(24): 106-108. (Hu J M.2023. Causes and prevention methods of Wheat sheath blight[J]. Seed Science & Technology, 41(24): 106-108.) [6] 金凯, 张永军, 罗志兵, 等. 2008. 利用GFP表达系统检测球孢白僵菌侵染昆虫过程[J]. 菌物学报, 27(03): 377-384. (Jin K, Zhang Y J, Luo Z B, et al.2008. GFP as a vital marker for investigation of pathogenic development of Beauveria bassiana[J]. Mycosystema, 27(03): 377-384.) [7] 李小六, 范永山, 宋彦超, 等. 2018. 大花蕙兰菌根显微结构及内生真菌的分离与鉴定[J]. 北方园艺, 407(08): 92-96. (Li X L, Fan Y S, Song Y C, et al.2018. Mycorrhizal microstructure of Cymbidium hybridum and isolation and identification of its mycorrhizal fungi[J]. Northern Horticulture, 407(08): 92-96.) [8] 李悦. 2016. 烟草立枯病的发病规律及病原菌的侵染特性研究[D]. 硕士学位论文, 广西大学, 导师: 袁高庆, pp.15. (Li Y. 2016. Study on the epidemiological patterns of tobacco sore shin and pathogenicity characteristics of the pathogen[D]. Thesis for M.S., Guangxi University, Supervisor: Yuan G Q, pp. 15.) [9] 刘彩云, 张巧凤, 郭炜, 等. 2023. 成株期抗纹枯病小麦种质的发掘[J]. 麦类作物学报, 43(01): 56-63. (Liu C Y, Zhang Q F, Guo W, et al.2023. Identification of novel wheat germplasm resistant to sharp eyespot at adult stage[J]. Journal of Triticeae Crops, 43(01): 56-63.) [10] 刘雪梅, 肖建国. 1999. 小麦纹枯病菌侵染过程的组织学研究[J]. 菌物系统, (03): 288-293. (Liu X M, Xiao J G. 1999. Histological study of the infection process by Rhizoctonia cerealis in Wheat[J]. Mycosystema, (03): 288-293.) [11] 卢明锋, 张月杰. 2012. 丝状真菌AL18的原生质体制备和再生条件的优化[J]. 生物技术, 22(03): 86-90. (Lu M F, Zhang Y J.2012. Optimization of preparation and regeneration condition of protoplast from filamentous fungi AL18[J]. Biotechnology, 22(03): 86-90.) [12] 陆英, 贺春萍, 吴伟怀, 等. 2020. 聚乙二醇介导咖啡炭疽菌遗传转化体系的建立[J]. 南方农业学报, 51(11): 2706-2712. (Lu Y, He C P, Wu W H, et al.2020. Establishment of genetic transformation system of coffee Collectotrichum using polyethylene glycol-mediated method[J]. Journal of Southern Agriculture, 51(11): 2706-2712.) [13] 毛建才, 王豪杰, 李俊华, 等. 2021. 甜瓜蔓枯病菌原生质体制备及再生体系研究[J]. 福建农业学报, 36(02): 202-208. (Mao J C, Wang H J, Li J H, et al.2021. Preparation and regeneration of Didymella bryoniae protoplasts[J]. Fujian Journal of Agricultural Sciences, 36(02): 202-208.) [14] 宁平. 2009. PEG介导的玉米丝轴黑粉菌原生质体转化与ras、gpd启动子的克隆[D]. 硕士学位论文, 华中农业大学, 导师: 肖炎农, pp. 21. (Ning P. 2009. Construction of protoplast transformation system of Sporisorium reilianum f. sp. Zeae with polyethylene glicol (PEG) and cloning of ras, gpd promoter[D]. Thesis for M.S., Huazhong Agricultural University, Supervisor: Xiao Y N, pp. 21.) [15] 宿景霞. 2012. GFP标记溶磷细菌在葡萄根际的定殖研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 房玉林, pp.62. (Su J X. 2012. Study of GFP-tagged phosphorous solubilizing bacteria in grape rhizosphere colonization[D]. Thesis for M.S., Northwest A&F University, Supervisor: Fang Y L, pp. 62.) [16] 王刘庆, 王龑, 王琦, 等. 2016. 聚乙二醇介导的赭曲霉遗传转化体系的构建[J]. 农业生物技术学报, 24(06): 928-936. (Wang L Q, Wang Y, Wang Q, et al.2016. Construction of genetic transformation system of Aspergillus ochraceus using polyethylene glycol mediated method[J]. Journal of Agricultural Biotechnology, 24(06): 928-936.) [17] 王文秀, 谷守芹, 李坡, 等. 2011. 玉米大斑病菌原生质体遗传转化体系的建立[J]. 玉米科学, 19(04):134-137. (Wang W X, Gu S Q, Li P, et al.2011. Establishment of the genetic transformation system of protoplasts from Setosphaeria turcica[J]. Journal of Maize Sciences, 19(04): 134-137.) [18] 吴新平, 史建荣, 刘乃炽, 等. 2004. GB /T 17980. 108—2004, 农药田间药效试验准则(二)第 108 部分: 杀菌剂防治小麦纹枯病[S]. 北京: 中华人民共和国国家质量监督检验检疫总局. (Wu X P, Shi J R, Liu N Z, et al. 2004. GB /T 17980. 108—2004, Pesticide-guidelines for the field efficacy trials [19] 徐进, 莫明和, 张克勤. 2004. 绿色荧光蛋白(GFP)在真菌研究中的应用[J]. 生物技术, 14(06): 74-77. (Xu J, Mo M H, Zhang K Q.2004. Green fluorescent protein (GFP) in fungal research[J]. Biotechnology, 14(06): 74-77.) [20] 闫佩瑶, 张莉, 王明玉, 等. 2021. PEG介导的假禾谷镰孢菌GFP遗传转化体系的建立[J].山东农业科学, 53(07): 90-95. (Yan P Y, Zhang L, Wang M Y, et al.2021. Construction of PEG-Mediated genetic transformation system of Fusarium pseudograminearum[J]. Shandong Agricultural Sciences, 53(07): 90-95.) [21] 赵君, 张震, 董飞宇, 等. 2024. 黑曲霉糖化酶工业菌株CBS 513.88原生质体制备条件的优化[J]. 河南农业大学学报, 58(04): 592-600. (Zhao J, Zhang Z, Dong F Y, et al.2024. Optimization of protoplast preparation for an industrial glucoamylase-producing strain Aspergillus niger CBS 513.88[J]. Journal of Henan Agricultural University, 58(04): 592-600.) [22] 赵楠, 闫思远, 裴瑞瑞, 等. 2024. 深色有隔内生真菌S12菌株遗传转化体系的建立及GFP标记菌株的获得[J]. 西北农林科技大学学报(自然科学版), 52(04): 127-135. (Zhao N, Yan S Y, Pei R R, et al.2024. PEG-mediated transformation system of dark septate endophyte Cladosporium cladosporioides S12 with GFP gene for strain visualization[J]. Journal of Northwest A & F University(Natural Science Edition), 52(04): 127-135.) [23] 赵小强, 陈志荣, 何芳, 等. 2018. 大丽轮枝菌原生质体的制备及再生[J]. 生物技术通报, 34(07): 166-173. (Zhao X Q, Chen Z R, He F, et al.2018. Preparation and regeneration of protoplast from Verticillium dahliae[J]. Biotechnology Bulletin, 34(07): 166-173.) [24] 张敬敬, 汪敏, 赵港伊, 等. 2023. 枯草芽胞杆菌Z-14菌株芽孢制剂和酷拉斯复配对小麦纹枯病的防治[J]. 农业生物技术学报, 31(01): 146-155. (Zhang J J, Wang M, Zhao G Y, et al.2023. Control of Wheat sharp eyespot by combination of Bacillus subtilis Z-14 spore preparation and Kuras[J]. Journal of Agricultural Biotechnology, 31(01): 146-155.) [25] 张向歌, 朱雅婧, 陆莉莉, 等. 2023. 油莎豆原生质体制备的组织筛选及条件优化[J]. 河南农业科学, 52(12): 49-56. (Zhang X G, Zhu Y Q, Lu L L, et al.2023. Tissue screening and condition optimization of protoplast preparation of Cyperus esculentus[J]. Journal of Henan Agricultural Sciences, 52(12): 49-56.) [26] 张颖, 李黎, 许玉彬, 等. 2014. 小麦纹枯病菌原生质体制备条件及再生菌株致病性研究[J]. 河南农业科学, 43(08): 82-85. (zhang Y, Li L, Xu Y B, et al.2014. Protoplast preparation conditions of Rhizoctonia cerealis and pathogenicity of regenerated strains[J]. Journal of Henan Agricultural Sciences, 43(08): 82-85.) [27] Amalamol D, Ashwin N M R, Lakshana K V, et al.2022. A highly efficient stratagem for protoplast isolation and genetic transformation in filamentous fungus Colletotrichum falcatum[J]. Folia Microbiologica, 67(3): 1-12. [28] Aragona M, Campos-Soriano L, Piombo E, et al.2021. Imaging the invasion of rice roots by the bakanae agent Fusarium fujikuroi using a GFP-tagged isolate[J]. European Journal of Plant Pathology, 161(1): 1-12. [29] Ferrer S, Daniel Ramón D, Salom J, et al.1985. Protoplasts from Podospora anserina: Isolation, purification, and transformation[J]. Current Microbiology, 12(5): 301-306. [30] Kuang Y B, Abah F, Abubakar Y S, et al.2023. Establishment of protoplast preparation protocol and genetic transformation system for Sclerotiophoma versabilis[J]. Journal of Plant Pathology, 106(1): 165-173. [31] Lagopodi A L, Ram A F, Lamers G E, et al.2002. Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker[J]. Molecular Plant-microbe Interactions: Molecular Plant-Microbe Interactions, 15(2): 172-179. [32] Li S, Chen S S, Tai Z, et al.2024. Polyethylene glycol-mediated genetic transformation and fluorescent labelling of Colletotrichum sublineola for studying sorghum anthracnose pathogenicity[J]. Journal of Phytopathology, 172(1): e13255. [33] Liu Z H, Friesen T L.2012. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens[J]. Methods in Molecular Biology, 835(21): 365-375. [34] Muthukumar T, Sathiyadash K, Valarmathi V.2018. Arbuscular mycorrhizal and dark septate endophyte fungal associations in plants of different vegetation types in Velliangiri hill of wes-tern ghats, southern India[J]. Acta Botanica Hungarica, 60(1/2): 185-222. [35] Skadsen W R, Hohn M T.2004. Use of Fusarium graminearum transformed with gfp to follow infection patterns in barley and Arabidopsis[J]. Physiological and Molecular Plant Pathology, 64(1): 45-53. [36] Yao Y R,Tian X L, Shen B M, et al.2015. Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita[J]. World Journal of Microbiology & Biotechnology, 31(4): 549-56.