Fitness of the Glyphosate-resistant Second Backcross Generation (BC2F1) Between Glyphosate-resistant Transgenic Oilseed Rape (Brassica napus) and Four Populations of Wild Brassica juncea
LIU Long-Nan, LI He-Wei, ZHANG Hua, QIANG Sheng, SONG Xiao-Ling*
Weed Research Laboratory, College of Life Sciences of Nanjing Agricultural University, Nanjing 210095, China
Abstract:With the rapid development of genetically modified technology, the environmental biosafety of transgene introgression into wild relatives has attracted much attention. To evaluate whether the transgene endowing glyphosate-resistance to Brassica napus could successfully introgress to the different populations of wild Brassica juncea, the fitness of the glyphosate-resistant second backcross generations BC2mF1 and BC2pF1 (m and p represent wild B. juncea as maternal plants and paternal plants, respectively) between 4 populations of wild B. juncea (Jurong, Nantong, Xining, Xi'an) and glyphosate-resistant oilseed rape was studied in the greenhouse and field. Vegetative growth indicators and reproductive growth indicators of these 4 second backcross generations were measured and used to calculate their composite fitness. Furthermore, the differences of the composite fitness between the second backcross generations and wild B. juncea were analyzed. The results showed that the composite fitness of all BC2mF1 and BC2pF1 were similar with that of their respective wild B. juncea under greenhouse conditions. Similarly, in the field, the BC2mF1 of Jurong, Xining, and Xi'an and BC2pF1 of Nantong and Xi'an were equivalent in composite fitness to their respective wild B. juncea, However, composite fitness of BC2pF1 of Jurong, Xining and BC2mF1 of Nantong surpassed that of their respective wild B. juncea progenitor. In conclusion, the glyphosate-resistant BC2mF1 and BC2pF1 of transgenic oilseed rape and the 4 wild B. juncea had a strong survival ability and potential possibility of establishing populations in the field. It was necessary to prevent initial gene flow and introgression to backcrosses between the herbicide-resistant transgenic oilseed rape and wild B. juncea upon commercial release of the transgenic crop. The results will provide data on the possible ecological consequences of the introgress of transgene from glyphosate-resistant transgenic oilseed rape into different populations of wild B. juncea.
刘龙男, 李鹤卫, 张华, 强胜, 宋小玲. 抗草甘膦转基因油菜与4个种群野芥菜抗性回交2代(BC2F1)的适合度[J]. 农业生物技术学报, 2020, 28(8): 1379-1389.
LIU Long-Nan, LI He-Wei, ZHANG Hua, QIANG Sheng, SONG Xiao-Ling. Fitness of the Glyphosate-resistant Second Backcross Generation (BC2F1) Between Glyphosate-resistant Transgenic Oilseed Rape (Brassica napus) and Four Populations of Wild Brassica juncea. 农业生物技术学报, 2020, 28(8): 1379-1389.
[1] 卞清,王晓蕾,强胜,等.2017.抗除草剂转基因油菜与野芥菜的抗性回交3代子4代的适合度[J].中国油料作物学报,39(06):737-745.
(Bian Q,Wang X L,Qiang S,et al.2017.Fitness of herbicide resistant BC3F5 between two herbicide-resistant transgenic oilseed rapes and wild Brassica juncea[J].Chinese Journal of Oil Crop Sciences.39(06):737-745.)
[2] 程泰,蒋博,王莹,等.2019.2018年湖北省油菜子市场综述和2019年市场走势分析[J].湖北农业科学,58(04):152-153.
(Cheng T,Jiang B,Wang Y,et al.2019.Overview of rapeseed market in Hubei province in 2018 and Analysis of Market Trend in 2019[J].Hubei Agricultural Sciences.58(04):152-153.)
[3] 国际农业生物技术应用服务组织.2019.2018年全球生物技术/转基因作物商业化发展态势[J].中国生物工程杂志,39(08):1-6.
(International service for the acquisition of agri-biotech applications (ISAAA).Global status of commercialized biotech/GM crops:2018[J].China Biotechnology,2019,39(08):1-6.)
[4] 胡茂龙,浦惠明,龙卫华,等.2013.一种甘蓝型油菜抗磺酰脲类除草剂基因及其应用[P].中国.103266118 A.
(Hu M L,Pu H M,Long W H,et al.2013.Brassica napus sulfonylurea herbicide resistance gene and application thereof[P].China.103266118 A.)
[5] 金红,付春梅,徐金升.1997.油菜雄性不育基因工程植株的建立及鉴定[J].天津农业科学,(01):3-6.
(Jin H,Fu C M,Xu J S.1997.Establishment and detection of transgenic male sterile plants in Brassica napus[J].Tianjin Academy of Agricultural Sciences,3(01):3-6.)
[6] 李杰华.2018.抗广谱性除草剂转基因油菜创制及抗性评价[D].硕士学位论文,华中农业大学,导师:周永明,pp.7-8.
(Li J H.2018.Development and evaluation of transgenic rapeseed with broad-spectrum herbicide resistant gene[D].Thesis for M.S.,Huazhong Agriculture University,Supervisor:Zhou Y M,pp.7-8.)
[7] 李想,潘良文,李俊毅,等.2011.进口油菜籽中不同转基因品系的检测与分析[J].中国油料作物学报,33(1):77-82.
(Li X,Pan L W,Li J Y,et al.2011.Identification of imported genetically modified rapeseeds[J].Chinese Journal of Oil Crop Sciences.33(1):77-82.)
[8] 浦惠明,戚存扣,张洁夫,等.2005.转基因抗除草剂油菜对十字花科杂草的基因漂移[J].生态学报,25(04):910-916.
(Pu H M,Qi C K,Zhang J F,et al.2005.The studies on gene flow from GM herbicide-tolerant rapeseed to cruciferous weeds[J].Acta Ecologica Sinica,25(04):581-588.)
[9] 沈志成,林朝阳,徐晓丽,等.2012.高抗草甘膦突变基因及其改良方法和应用[P].中国,2012097720 A1.
(Sheng Z C,Lin C Y,Xu X L,et al.2012.Highly resistant glyphosate mutant gene and its improved method and application[P].China.2012097720 A1.)
[10] 宋小玲,皇甫超河,强胜.2007.抗草丁膦和抗草甘膦转基因油菜的抗性基因向野芥菜的流动[J].植物生态学报,(04):729-737.
(Song X L,Huangfu C H,Qiang S.2007.Gene flow from transgenic glufosinate-or glyphosate-tolerant oilseed rape to wild rape[J].Journal of Plant Ecology (Chinese Version),31(04):729-737.)
[11] 王建,闫静,张庆玲,等.2016.从亲和性及F1的适合度评价抗除草剂转基因油菜向不同种群野芥菜的基因漂移风险[J].南京农业大学学报,39(04):563-572.
(Wang J,Yan J,Zhang Q L,et al.2016.Risk assessment on gene flow from transgenic oilseed rape to different wild Brassica juncea based on the compatibility and fitness of F1[J].Journal of Nanjing Agricultural University,39(04):563-572.)
[12] 王晓蕾,王建,张庆玲,等.2017.抗草丁膦转基因油菜与野芥菜的抗性回交3代子1代和子2代的适合度[J].草业学报,26(12):138-151.
(Wang X L,Wang J,Zhang Q L,et al.2017.Fitness of resistant backcross generation (BC3F2-3) between glufosinate-resistant transgenic oilseed rape and wild Brassica juncea[J].Acta Prataculturae Sinica,26(12):138-151.)
[13] 闫静.2016.两种抗除草剂转基因油菜和野芥菜的回交1代子代的染色体行为研究[D].硕士学位论文,南京农业大学,导师:宋小玲,pp.80-83.
(Yan J.2016.Study on chromosome behavior of the progenies of the first backcross generation between two herbicide-resistant transgenic oilseed rape and wild Brassica juncea[D].Thesis for M.S.,Nanjing Agricultural University,Supervisor:Song X L,pp.80-83.)
[14] 闫静,王晓蕾,张玉池,等.2018.抗除草剂转基因油菜与野芥菜的抗性回交3代子3代的适合度[J].中国农业科学,51(01):105-118.
(Yan J,Wang X L,Zhang Y C,et al.2018.Fitness of herbicide-resistant BC3F4 between two herbicide-resistant transgenic Brassica napus and wild Brassica juncea[J].Scientia Agricultura Sinica,51(01):105-118.)
[15] 张庆玲,王建,强胜,等.2017.抗草甘膦转基因油菜与野芥菜回交3代子1代和子2代的适合度研究[J].南京农业大学学报,40(03):434-443.
(Zhang Q L,Wang J,Qiang S,et al.2017.Fitness of BC3 F2 and BC3 F3 between glyphosate-resistant transgenic oilseed rape and wild Brassica juncea[J].Journal of Nanjing Agricultural University,40(03):434-443.)
[16] 郑爱琴,强胜,宋小玲.2014.抗除草剂转基因油菜与野芥菜的杂交1代与5种常规栽培油菜回交后代的适合度[J].应用与环境生物学报,20(03):337-344.
(Zheng A Q,Qiang S,Song X L.2014.Fitness of backcross between F1(wild B.juncea×herbicide-resistant transgenic oilseed rape) and 5 conventional cultivate varieties[J].Chinese Journal of Applied and Environmental Biology,20(3):337-344.)
[17] 钟蓉,朱峰.1997.油菜的遗传转化及抗溴苯腈转基因油菜的获得[J].植物学报:英文版,39(1):22-27.
(Zhong R,Zhu F.1997.Oilseed rape transformation and the establishment of a bromoxynil-resistant transgenic oilseed rape[J].Acta Botanica Sinica,39(1):22-27.)
[18] 朱家立.2010.亚基因组杂种优势表现的评估及新型甘蓝型油菜FAE1指纹图谱分析[D].硕士学位论文,华中农业大学,导师:孟金陵,pp.5-6.
(Zhu J L.2010.The assessment for subgenomic heterotic performance and FAE1 analysis of fingerprint in new type Brasscia napus.Thesis for M.S.,Huazhong Agricultural University,Supervisor:Men J L,pp.5-6.)
[19] Allainguillaume J,Alexander M,Bullock J M,et al.2006.Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats[J].Molecular Ecology,15(4):1175-1184.
[20] Ammitzbøll H,Mikkelsen T N,Jørgensen R B.2005.Transgene expression and fitness of hybrids between GM oilseed rape and Brassica rapa[J].Environmental Biosafety Research,4(01):3-12.
[21] Aono M,Wakiyama S,Nagatsu M,et al.2006.Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan[J].Environmental Biosafety Research,5(02):77-87.
[22] Bing D J,Downey R K,Rakow G F W.1996.Hybridizations among Brassica napus,B.rapa and B.juncea and their two weedy relatives B.nigra and Sinapis arvensis under open pollination conditions in the field[J].Plant Breeding,115(6):470-473.
[23] Cao D,Stewart C N,Zheng M,et al.2014.Stable bacillus thuringiensis transgene introgression from Brassica napus to wild mustard B.juncea[J].Plant Science,227:45-50.
[24] Chèvre A M,Eber F,Baranger A,et al.1997.Gene flow from transgenic crops[J].Nature,389(6654):924-924.
[25] Chèvre A M,Eber F,Baranger A,et al.1998.Characterization of backcross generations obtained under field conditions from oilseed rape-wild radish F1 interspecific hybrids:An assessment of transgene dispersal[J].Theoretical and Applied Genetics,97(1):90-98.
[26] Darmency H,Lefol E,Fleury A.1998.Spontaneous hybridizations between oilseed rape and wild radish[J].Molecular Ecology,7(11):1467-1473.
[27] Devos Y,Hails R S,Messéan A,et al.2012.Feral genetically modified herbicide tolerant oilseed rape from seed import spills:Are concerns scientifically justified?[J].Transgenic Research,21:1-21.
[28] Eber F,Chèvre A M,Baranger A,et al.1994.Spontaneous hybridization between a male-sterile oilseed rape and two weeds[J].Theoretical and Applied Genetics,88(3-4):362-368.
[29] Gressel J.2010.Gene flow of transgenic seed-expressed traits:Biosafety considerations[J].Plant Science,179(6):630-634.
[30] Gueritaine G,Sester M,Eber F,et al.2002.Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum)[J].Molecular Ecology,11(8):1419-1426.
[31] Halfhill M D,Sutherland J P,Moon H S,et al.2005.Growth,productivity,and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes[J].Molecular Ecology,14(10):3177-3189.
[32] Hall L,Topinka K,Huffman J,et al.2000.Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B.napus volunteers[J].Weed Science,48(6):688-694.
[33] Hauser T P,Damgaard C,Jørgensen R B.2003.Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B.rapa (Brassicaceae)[J].American Journal of Botany,90(4):571-578.
[34] Hauser T P,Shaw R G.Østergård H.1998.Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape (B.napus)[J].Heredity,81(4):429-435.
[35] Huangfu C H,Qiang S,Song X L.2011.Performance of hybrids between transgenic oilseed rape (Brassica napus) and wild Brassica juncea an evaluation of potential for transgene escape[J].Crop Protection,30(1):57-62.
[36] Huangfu C H,Song X L,Qiang S.2009.ISSR variation within and among wild Brassica juncea populations:Implication for herbicide resistance evolution[J].Genetic Resources and Crop Evolution,56(7):913-924.
[37] Jenczewski E,Ronfort J,Chèvre A M.2003.Crop-to-wild gene flow,introgression and possible fitness effects of transgenes[J].Environmental Biosafety Research,2(1):9-24.
[38] Jørgensen R B,Andersen B.1994.Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B.campestris (Brassicaceae):A risk of growing genetically modified oilseed rape[J].American Journal of Botany,81(12):1620-1626.
[39] Jørgensen R.B,Andersen B,Hauser T P,et al.1998.Introgression of crop genes from oilseed rape (Brassica napus) to related wild species-an avenue for the escape of engineered genes[J].Acta Horticulturae,459(459):211-217.
[40] Katsuta K,Matsuo K,Yoshimura Y,et al.2015.Long-term monitoring of feral genetically modified herbicide-tolerant Brassica napus populations around unloading Japanese ports[J].Breeding Science,65(3):265-275.
[41] Kawata M,Murakami K,Ishikawa T.2009.Dispersal and persistence of genetically modified oilseed rape around Japanese harbors[J].Environmental Science and Pollution Research,16(2):120-126.
[42] Liu Y,Wei W,Ma K,et al.2013.Consequences of gene flow between oilseed rape (Brassica napus) and its relatives[J].Plant Science,211:42-51.
[43] Liu Y B,Wei W,Ma K P,et al.2010.Backcrosses to Brassica napus of hybrids between B.juncea and B.napus as a source of herbicide-resistant volunteer-like feral populations[J].Plant Science,179(5):459-465.
[44] Londo J P,Bautista N S,Sagers C L,et al.2010.Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids[J].Annals of Botany,106(6):957-965.
[45] Mercer K L,Andow D A,Wyse D L,et al.2007.Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower[J].Ecology Letters,10(5):383-393.
[46] Mikkelsen T R,Andersen B,Jørgensen R B.1996.The risk of crop transgene spread[J].Nature,380(6569):31.
[47] Nishizawa T,Nakajima N,Tamaoki M,et al.2016.Fixed-route monitoring and a comparative study of the occurrence of herbicide-resistant oilseed rape (Brassica napus L.) along a Japanese roadside[J].Gm Crops and Food,7(1):20-37.
[48] Pandolfo C E,Presotto A,Carbonell F T.2016.Transgenic glyphosate-resistant oilseed rape (Brassica napus) as an invasive weed in Argentina:Detection,characterization,and control alternatives[J].Environmental Science and Pollution Research,23:24081-24091.
[49] Pertl M,Hauser T P,Damgaard C,et al.2002.Male fitness of oilseed rape (Brassica napus),weedy B.rapa and their F1 hybrids when pollinating B.rapa seeds[J].Heredity,89(3):212-218.
[50] Qian W,Chen X,Fu D,et al.2005.Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus,introgressed with partial Brassica.rapa genome[J].Theoretical and Applied Genetics,110(7):1187-1194.
[51] Qian W,Sass O,Meng J,et al.2007.Heterotic patterns in rapeseed (Brassica napus L.):I.Crosses between spring and Chinese semi-winter lines[J].Theoretical and Applied Genetics,115(1):27-34.
[52] Scheffler J A,Dale P J.1994.Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species[J].Transgenic Research,3(5):263-278.
[53] Simard M J,Légère A,Séguin-Swartz G,et al.2005.Fitness of double vs.single herbicide-resistant canola[J].Weed Science,53(4):489-498.
[54] Snow A A,Andersen B,Jørgensen R B.1999.Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B.rapa[J].Molecular Ecology,8(4):605-615.
[55] Song X L,Wang Z,Zuo J,et al.2010.Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B.juncea var.gracilis[J].Theoretical and Applied Genetics,120(8):1501-1510.
[56] Stewart C N,Halfhill M D,Warwick S I.2003.Genetic modification:Transgene introgression from genetically modified crops to their wild relatives[J].Nature Reviews Genetics,4(10):806-817.
[57] Sun X Q,Qu Y Q,Li M M,et al.2018.Genetic diversity,genetic structure and migration routes of wild Brassica juncea,in China assessed by SSR markersn[J].Genetic Resources and Crop Evolution,65(6):1581-1590.
[58] Tang T,Chen G M,Bu C P,et al.2018.Transgene introgression from\r,Brassica napus\r,to different varieties of\r,Brassica juncea[J].Plant Breeding,137(2):171-180.
[59] Tsuda M,Okuzaki A,Kaneko Y,et al.2012.Persistent C genome chromosome regions identified by SSR analysis in backcross progenies between Brassica juncea and B.napus[J].Breeding Science,62(4):328.
[60] Wilkinson M,Tepfer M.2009.Fitness and beyond:Preparing for the arrival of GM crops with ecologically important novel characters[J].Environmental Biosafety Research,8(1):1-14.