Plant Chitinase and β -1, 3-glucanase and Their Synergistic Function in Disease Resistance
CHEN Yan-Ling1,2, CEN Guang-Li1, SUN Ting-Ting1, YOU Chui-Huai1,2, QUE You-Xiong3, SU Ya- Chun1,2*
1 Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
2 Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
3 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
Abstract:Plant chitinase and β -1, 3-glucanase, two important defensive factors in the plant defense system, can hydrolyze the main components of pathogenic cell wall chitin, β -1, 3-glucan and peptidoglycan, thus effectively inhibit the growth of pathogens. In addition, they also have synergistic antimicrobial effects and are widely used in plant disease resistance genetic engineering. In this paper, the research progress on the structure, classification, biological characteristics, expression regulation mechanism and the synergistic disease resistance of plant chitinase and β-1,3-glucanase were reviewed. This study will provide references for systematically understand the action mode of plant chitinase and β -1, 3-glucanase, and for the genetic improvement of plant disease resistance.
陈燕玲, 岑光莉, 孙婷婷, 尤垂淮, 阙友雄, 苏亚春. 植物几丁质酶和 β-1,3-葡聚糖酶及其协同抗病性研究[J]. 农业生物技术学报, 2022, 30(7): 1394-1411.
CHEN Yan-Ling, CEN Guang-Li, SUN Ting-Ting, YOU Chui-Huai, QUE You-Xiong, SU Ya- Chun. Plant Chitinase and β -1, 3-glucanase and Their Synergistic Function in Disease Resistance. 农业生物技术学报, 2022, 30(7): 1394-1411.
[1] 程红梅, 简桂良, 倪万潮, 等 . 2005. 转几丁质酶和 β-1,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性[J]. 中国农业科学, 38(6): 1160-1166.
(Cheng H M, Jian G L, Ni W C, et al.2005. Increase of Fusarium- and Verticillium- resistance by transferring chitinase and glucanase gene into cotton (Gossypium hirsutum)[J]. Chinese Agricultur‐ al Sciences, 38(6): 1160-1166.)
[2] 付晓佳, 张倩, 李琳, 等 . 2016. 农杆菌介导烟草抗真菌 β-1,3-葡聚糖酶基因转化洋桔梗[J]. 江苏农业学报 , 32(1):44-50.
(Fu X J, Zhang Q, Li L, et al.2016. Agrobacteri‐ um-mediated transformation of tobacco (Nicotiana taba- cum) β -1, 3-glucanase gene into Eustoma grandiflorum (Raf.) Shinn[J]. Jiangsu Journal of Agricultural Scienc‐ es, 32(1): 44-50.)
[3] 高金玉, 韩冰, 杨晓虹, 等 . 2017. 禾本科植物雄性不育遗传机制与利用[J]. 北方农业学报, 45(1): 25-32.
(Gao J Y, Han B, Yang X H, et al.2017. Genetic mechanism and utilization of the gramineae male sterile[J]. Journal of Northern Agriculture, 45(1): 25-32.)
[4] 顾丽红, 张树珍, 杨本鹏, 等 . 2008. 几丁质酶和 β-1,3-葡聚糖酶基因导入甘蔗[J]. 分子植物育种, 6(2): 277-280.
(Gu L H, Zhang S Z, Yang B P, et al.2008. Introduction of chitin and β-1,3-glucan into sugarcane (Saccharum offici- narum)[J]. Molecular Plant Breeding, 6(2): 277-280.)
[5] 黄珏 .2013. 转几丁质酶基因和 β-1,3-葡聚糖酶基因玉米抗纹枯病研究[D]. 硕士学位论文, 华中农业大学, 导师: 董五辈 , pp. 1-95.
(Huang Y.2013. Transformation of maize with chitinase and β-1,3-glucanase gene for resis‐ tance to sheath blight (Zea mays) [D]. Thesis for M A, Huazhong agricultural university, Supervisor: Dong W B, pp.1-95.)
[6] 蓝海燕, 田颖川, 张丽华, 等 . 2000a. 表达 β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究[J]. 遗传学报 , 27(1): 70-77.
(Lan H Y, Tian Y C, Zhang L H, et al.2000. Study on transgenic tobacco (Nicotiana tabacum) plant expressing β-1,3-glucanase and chitinase genes and their potential for fungal resistance[J]. Jour‐ nal of Genetics and Genomics, 27(1): 70-77.)
[7] 蓝海燕, 王长海, 张丽华, 等 . 2000b. 导入 β-1,3-葡聚糖酶及几丁质酶基因的转基因可育油菜及其抗菌核病的研究[J]. 生物工程学报, 16(2): 142-146.
(Lan H Y, Wang Z H, Zhang L H, et al.2000. Studies on transgenic oil‐ seed rape (Brassica napus) plants transformed with β -1,3-glucanase and chitinase genes and its resistance to Sclerotinia sclerotiorium[J]. Journal of Bioengineering,16(2): 142-146.)
[8] 黎定军, 赵开军, 周清明, 等 . 2002. 转几丁质酶基因和 β-1,3- 葡聚糖酶基因烟草的研究[J]. 湖南农业大学学报:自然科学版, 28(3): 211-213.
(Li D J, Zhao K J, Zhou Q M, et al.2002. Transgenic tobacco (Nicotiana tabacum) con‐ taining chitinase and β -1, 3-glucanase[J]. Journal of Hu‐ nan Agricultural University: Natural Science Edition, 28(3): 211-213.)
[9] 李和平, 姚明镜, 廖玉才 . 2005. 小麦几丁质酶基因的异种表达及其功能鉴定[J]. 植物生理与分子生物学学报 31(6): 589-593.
(Li H P, Yao M J, Liao Y C.2005. Heterol‐ ogous expression and functional identification of chitin‐ ase gene from wheat (Triticum aestivum)[J]. Journal of Plant Physiology and Molecular Biology, 31(6): 589-593.)
[10] 牛庆霖, 王迎, 罗磊, 等 . 2013. 欧美杨 107 杨 β-1,3-葡聚糖酶 (BG2)基因遗传转化及对溃疡病的抗性分析[J]. 林业科学 , 49(11): 60-66.
(Niu Q L, Wang Y, Luo L, et al.2013. Transformation of BG2 gene into Populus × eura- mericana cv.‘Neva’and resistance of the transgenic poplar to canker disease[J]. Scientia Silvae Sinicae, 49(11): 60-66.)
[11] 王合春, 陈新利, 隋炯明, 等 . 2013. 花生 β-1,3-葡聚糖酶基因启动子的克隆及功能分析[J]. 植物遗传资源学报, 14(5): 864-870.
(Wang H C, Chen X L, Sui J M, et al.2013. Cloning and functional analysis of the promoter region of β -1, 3-glucanase gene in peanut (Arachis hypo- gaea)[J]. Journal of Plant Genetic Resources, 14(5): 864-870.)
[12] 王新发, 王汉中, 刘贵华, 等 . 2005. 导入双价基因的转基因杂交油菜亲本及其对菌核病抗性的研究[J]. 植物学通报, 22(3): 292-301.
(Wang X F, Wang H Z, Liu G H, et al.2005. Transgenic hybrid parents in Brassica napus transformed with bivalent genes for resistance to Sclero- tinia sclerotiorum[J]. Chinese Bulletin of Botany, 22(3):292-301.
[13] 吴家和, 张献龙, 罗晓丽, 等 . 2004. 转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性[J]. 遗传学报 31(2): 183-188.
(Wu J H, Zhang X L, Luo X L, et al.2004. Transgenic cotton plant of chitinase and glucanase genes and their performance of Verticillium dahliea[J]. Journal of Genetics and Genomics, 31(2): 183-188.)
[14] 张志忠, 吴菁华, 吕柳新, 等 . 2005. 双价抗真菌基因表达载体的构建及转基因西瓜的研究[J]. 热带亚热带植物学报, 13(5): 369-374.
(Zhang Z Z, Wu J H, Lu L X, et al.2005. Construction of a plant expression vector carrying two antifungal genes and its transfer to watermelon (Citrullus lanatus)[J]. Journal of Tropical and Subtropi‐ cal Plants, 13(5): 369-374.)
[15] Adams D J.2004. Fungal cell wall chitinases and glucanases[J]. Microbiology, 150(7): 2029-2035.
[16] Aimanianda V, Simenel C, Garnaud C, et al.2017. The dual activity responsible for the elongation and branching of β - (1, 3) -glucan in the fungal cell wall[J]. mBio, 8(3): e00619-17.
[17] Ali M, Gai W, Khattak A M, et al.2019. Knockdown of the chitin-binding protein family gene CaChiIV1 increased sensitivity to Phytophthora capsici and drought stress in pepper plants[J]. Molecular Genetics and Genomics, 294(5): 1311-1326.
[18] Ali M, Li Q H, Zou T, et al.2020. Chitinase gene positively regulates hypersensitive and defense responses of pepper to Colletotrichum acutatum infection[J]. International Journal of Molecular Sciences, 21(18): 6624.
[19] Amian A A, Papenbrock J, Jacobsen H, et al.2011. Enhancing transgenic pea (Pisum sativum L.) resistance against fun‐ gal diseases through stacking of two antifungal genes (chitinase and glucanase)[J]. Genetically Modified Crops, 2(2): 104-109.
[20] Araki T, Torikata T.1995. Structural classification of plant chitinases: two subclasses in class I and class II chitinase[J]. Bioscience Biotechnology & Biochemistry, 59(2):336-338. DOI: 10.1271/bbb.59.336
[21] Atamian H S, Harmer S L.2016. Circadian regulation of hor‐ mone signaling and plant physiology[J]. Plant Molecu‐ lar Biology, 91(6): 691-702.
[22] Balasubramanian V, Vashisht D, Cletus J, et al.2012. Plant β-1, 3-glucanases: Their biological functions and transgen‐ic expression against phytopathogenic fungi[J]. Biotech‐ nology Letters, 34(11): 1983-1990.
[23] Beerhues L, Kombrink E.1994. Primary structure and expression of mRNAs encoding basic chitinase and 1,3-β-glucanase in potato[J]. Plant Molecular Biology, 24(2): 353-367.
[24] Broglie K E, Gaynor J J, Broglie R M.1986. Ethylene-regulat‐ ed gene expression: Molecular cloning of the genes en‐ coding an endochitinase from Phaseolus vulgaris[J]. Pro‐ ceedings of the National Academy of Sciences of the United States of America, 83(18): 6820-6824.
[25] Büchter R, Strömberg A, Schmelzer E, et al.1997. Primary structure and expression of acidic (class II) chitinase in potato[J]. Plant Molecular Biology, 35(6): 749-761.
[26] Chalavi V, Tabaeizadeh Z, Thibodeau P.2003. Enhanced resis‐ tance to Verticillium dahliae in transgenic strawberry plants expressing a Lycopersicon chilense chitinase gene[J]. Journal of the American Society for Horticultural Science, 128(5): 747-753.
[27] Chaudet M M, Naumann T A, Price N P J, et al.2014. Crystal‐ lographic structure of ChitA, a glycoside hydrolase fam‐ ily 19, plant class IV chitinase from Zea mays[J]. Pro‐ tein Science, 23(5): 586-593.
[28] Cheong Y H, Kim C Y, Chun H J, et al.2000. Molecular clon‐ ing of a soybean class III β -1, 3-glucanase gene that is regulated both developmentally and in response to pathogen infection[J]. Plant Science, 154(1): 71-81.
[29] Chhikara S, Chaudhury D, Dhankher O P, et al.2012. Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica jun- cea provides protection against Alternaria brassicae[J]. Plant Cell Tissue and Organ Culture, 108(1): 83-89.
[30] Cletus J, Balasubramanian V, Vashisht D, et al.2013. Trans‐ genic expression of plant chitinases to enhance disease resistance[J]. Biotechnology Letters, 35(11): 1719-1732.
[31] Dong S, Tredway L P, Shew H D, et al.2007. Resistance of transgenic tall fescue to two major fungal diseases[J]. Plant Science, 173(5): 501-509.
[32] Dubois M, Van den Broeck L, Inzé D.2018. The pivotal role of ethylene in plant growth[J]. Trends in Plant Science, 23(4): 311-323.
[33] Durechova D, Jopcik M, Rajninec M, et al.2019. Expression of Drosera rotundifolia chitinase in transgenic tobacco plants enhanced their antifungal potential[J]. Molecular Biotechnology, 61(12): 916-928.
[34] Gao Y, Zan X L, Wu X F, et al.2014. Identification of fungus- responsive cis-acting element in the promoter of Brassi- ca juncea chitinase gene, BjCHI1[J]. Plant Science, 9(1):190-198.
[35] Grover A.2012. Plant chitinases: Genetic diversity and physi‐ ological roles[J]. Critical Reviews in Plant Sciences, 31(1): 57-73.
[36] Gu S Y, Wang L C, Cheuh C M, et al.2019. CHITINASE LIKE1 regulates root development of dark-grown seedlings by modulating ethylene biosynthesis in Arabidopsis thaliana[J]. Frontiers in Plant Science, 10: 600.
[37] Hanin A N, Parveez G K A, Rasid O A, et al.2020. Biolistic- mediated oil palm transformation with alfalfa glucanase (AGLU1) and rice chitinase (RCH10) genes for increas‐ ing oil palm resistance towards Ganoderma boninense[J]. Industrial Crops and Products, 144: 112008.
[38] Hong J K, Hwang B K.2006. Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bac‐ terial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis[J]. Planta, 223(3): 433-448.
[39] Hossain M A, Noh H N, Kim K I, et al.2010. Mutation of the chitinase-like protein-encoding AtCTL2 gene enhances lignin accumulation in dark-grown Arabidopsis seedlings[J]. Journal of Plant Physiology, 167(8): 650-658.
[40] Iqbal M M, Nazir F, Ali S, et al.2012. Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot[J]. Molecular Biotechnology, 50(2): 129-136.
[41] D Jayaraj J, Punja Z K.2007. Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens[J]. Plant Cell Reports, 26(9): 1539-1546.
[42] Ji C, Kuć J.1996. Antifungal activity of cucumber β -1, 3-glu‐ canase and chitinase[J]. Physiological and Molecular Plant Pathology, 49(4): 257-265.
[43] Karmakar S, Molla K A, Chanda P K, et al.2016. Green tis‐ sue-specific co-expression of chitinase and oxalate oxi‐ dase 4 genes in rice for enhanced resistance against sheath blight[J]. Planta, 243(1): 115-130.
[44] Kasprzewska A.2003. Plant chitinases-regulation and function[J]. Cellular & Molecular Biology Letters, 8(3): 809-824.
[45] Kim J, Jang I, Wu R, et al.2003. Coexpression of a modified maize ribosome-inactivating protein and a rice basic chi‐ tinase gene in transgenic rice plants confers enhanced re‐ sistance to sheath blight[J]. Transgenic Research, 12(4):475-484.
[46] Kishimoto K, Nishizawa Y, Tabei Y, et al.2002. Detailed anal‐ ysis of rice chitinase gene expression in transgenic cu‐ cumber plants showing different levels of disease resis‐ tance to gray mold (Botrytis cinerea)[J]. Plant Science,162(5): 655-662.
[47] Kolosova N, Breuil C, Bohlmann J.2014. Cloning and charac‐terization of chitinases from interior spruce and lodge‐ pole pine[J]. Phytochemistry, 101: 32-39.
[48] Kovács G, Sági L, Jacon G, et al.2013. Expression of a rice chitinase gene in transgenic banana ‘( Gros Michel’,AAA genome group) confers resistance to black leaf streak disease[J]. Transgenic Research, 22(1): 117-130.
[49] Kumar M, Brar A, Yadav M, et al.2018. Chitinases-potential candidates for enhanced plant resistance towards fungal pathogens[J]. Agriculture, 8(7): 88.
[50] Kuo C J, Liao Y C, Yang J H, et al.2008. Cloning and charac‐ terization of an antifungal class Ⅲ chitinase from suspension-cultured bamboo (Bambusa oldhamii) cells[J].Journal of Agricultural & Food Chemistry, 56(23):11507.
[51] Langner T, Göhre V.2016. Fungal chitinases: Function, regu‐ lation, and potential roles in plant pathogen interactions[J]. Current Genetics, 62(2): 243-254.
[52] Leubner-Metzger G.2003. Functions and regulation of β-1,3- glucanases during seed germination, dormancy release and after-ripening[J]. Seed Science Research, 13(1): 17-34.
[53] Li Y F, Zhu R, Xu P.2005. Activation of the gene promoter of barley β -1, 3-glucanase isoenzyme G Ⅲ is salicylic acid (SA) -dependent in transgenic rice plants[J]. Journal of Plant Research, 118(3): 215-221.
[54] Liu B, Xue X D, Cui S P, et al.2010. Cloning and character‐ ization of a wheat β -1, 3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici[J]. Molecular Biology Reports, 37(2): 1045-1052.
[55] Liu D P, He X, Li W X, et al.2013. A β -1, 3-glucanase gene expressed in fruit of Pyrus pyrifolia enhances resistance to several pathogenic fungi in transgenic tobacco[J]. Eu‐ ropean Journal of Plant Pathology, 135(2): 265-277.
[56] Liu Z Q, Shi L P, Yang S, et al.2017. Functional and promoter analysis of ChiIV3, a chitinase of pepper plant, in re‐ sponse to Phytophthora capsici infection[J]. International Journal of Molecular Sciences, 18(8): 1661.
[57] Malik A, Preety.2019. Purification and properties of plant chi‐ tinases: A review[J]. Journal of Food Biochemistry, 43(3): e12762.
[58] Mao B Z, Liu X H, Hu D W, et al.2014. Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination[J]. World Journal of Microbiology and Biotechnology, 30(4):1229-1238.
[59] Mauch F, Mauch-Mani B, Boller T.1988. Antifungal hydro‐ lases in pea tissue 1: II. inhibition of fungal growth by combinations of chitinase and β -1, 3-glucanase[J]. Plant Physiology, 88(3): 936-942.
[60] Mestre P, Arista G, Piron M, et al.2017. Identification of a Vitis vinifera endo- β -1, 3-glucanase with antimicrobial ac‐ tivity against Plasmopara viticola[J]. Molecular Plant Pa‐ thology, 18(5): 708-719.
[61] Mitsunaga T, Iwase M, Yuki D, et al.2004. Intracellular local‐ ization of a class IV chitinase from yam[J]. Bioscience Biotechnology & Biochemistry, 68(7): 1518-1524.
[62] Miyamoto K, Shimizu T, Lin F, et al.2012. Identification of an E-box motif responsible for the expression of jasmonic acid-induced chitinase gene OsChia4a in rice[J]. Journal of Plant Physiology, 169(6): 621-627.
[63] Moravčíková J, Libantová J, Heldák J, et al.2007. Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia β -1, 3-glucanase genes in transgenic po‐ tato plants[J]. Acta Physiologiae Plantarum, 29(2): 133-141.
[64] Neuhaus J M, Fritig B, Linthorst H J M, et al.1996. A revised nomenclature for chitinase genes[J]. Plant Molecular Bi‐ ology Reporter, 14(2): 102-104.
[65] Nookaraju A, Agrawal D C.2012. Enhanced tolerance of transgenic grapevines expressing chitinase and β -1, 3- glucanase genes to downy mildew[J]. Plant Cell, Tissue and Organ Culture, 111(1): 15-28.
[66] Núñez De Cáceres González F F, Davey M R, Cancho San‐ chez E, et al.2015. Conferred resistance to Botrytis cine- rea in Lilium by overexpression of the RCH10 chitinase gene[J]. Plant Cell Reports, 34(7): 1201-1209.
[67] Ojaghian S, Wang L, Xie G L.2020. Effect of introducing chi‐ tinase gene on the resistance of tuber mustard against white mold[J]. The Plant Pathology Journal, 36(4): 378-383.
[68] Patil D N, Datta M, Chaudhary A, et al.2009. Isolation, purification, crystallization and preliminary crystallographic studies of chitinase from tamarind (Tamarindus indica) seeds[J]. Acta Crystallographica Section F, 65(4): 343-345.
[69] Payne G, Ward E, Gaffney T, et al.1990. Evidence for a third structural class of β -1, 3-glucanase in tobacco[J]. Plant Molecular Biology, 15(6): 797-808.
[70] Pusztahelyi T.2018. Chitin and chitin-related compounds in plant-fungal interactions[J]. Mycology, 9(3): 189-201.
[71] Rakwal R, Yang G, Komatsu S.2004. Chitinase induced by jasmonic acid, methyl jasmonate, ethylene and protein phosphatase inhibitors in rice[J]. Molecular Biology Re‐ ports, 31(2): 113-119.
[72] Rezzonico E, Flury N, Meins F, et al.1998. Transcriptional down-regulation by abscisic acid of pathogenesis-relat‐ ed β -1, 3-glucanase genes in tobacco cell cultures[J]. Plant Physiology, 117(2): 585-592.
[73] Roy Choudhury S, Roy S, Singh S K, et al.2010. Molecular characterization and differential expression of β-1,3-glu‐ canase during ripening in banana fruit in response to eth‐ ylene, auxin, ABA, wounding, cold and light-dark cycles[J]. Plant Cell Reports, 29(8): 813-828.
[74] Samac D A, Shah D M.1991. Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter[J]. The Plant Cell, 3(10): 1063-1072.
[75] Schlumbaum A, Mauch F, Vögeli U, et al.1986. Plant chitinases are potent inhibitors of fungal growth[J]. Nature,324(6095): 365-367.
[76] Sela-Buurlage M B, Ponstein A S, Bres-Vloemans S A, et al.1993. Only specific tobacco (Nicotiana tabacum) chitin‐ ases and beta-1, 3-glucanases exhibit antifungal activity[J]. Plant Physiology, 101(3): 857-863.
[77] Sels J, Mathys J, De Coninck B M A, et al.2008. Plant patho‐ genesis-related (PR) proteins: A focus on PR peptides[J]. Plant Physiology and Biochemistry, 46(11): 941-950.
[78] Shi Y L, Zhang Y H, Shih D S.2006. Cloning and expression analysis of two β -1, 3-glucanase genes from strawberry[J]. Journal of Plant Physiology, 163(9): 956-967.
[79] Shinshi H, Mohnen D, Meins F.1987. Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tis‐ sues by auxin and cytokinin[J]. Proceedings of the Na‐ tional Academy of Sciences, 84(1): 89-93.
[80] Singh A, Isaac Kirubakaran S, Sakthivel N.2007. Heterolo‐ gous expression of new antifungal chitinase from wheat[J]. Protein Expression and Purification, 56(1): 100-109.
[81] Son S, An H, Seol Y, et al.2020. Rice transcription factor WRKY114 directly regulates the expression of OsPR1a and chitinase to enhance resistance against Xanthomonas oryzae pv. oryzae[J]. Biochemical and Biophysical Research Communications, 533(4): 1262-1268.
[82] Su Y C, Wang Z Q, Liu F, et al.2016. Isolation and character‐ ization of ScGluD2, a new sugarcane beta-1, 3-glucanase D family gene induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CaCl2 stresses[J]. Frontiers in Plant Science, 7: 1348.
[83] Su Y C, Xu L P, Fu Z W, et al.2014. ScChi, encoding an acid‐ ic class Ⅲ chitinase of sugarcane, confers positive re‐ sponses to biotic and abiotic stresses in sugarcane[J]. In‐ ternational Journal of Molecular Sciences, 15(2): 2738-2760.
[84] Su Y C, Xu L P, Wang S S, et al.2015. Identification, phyloge‐ ny and transcript of chitinase family genes in sugarcane[J]. Scientific Reports, 5: 10708.
[85] Su Y C, Xu L P, Xue B T, et al.2013. Molecular cloning and characterization of two pathogenesis-related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum[J]. Plant Cell Reports, 32(10): 1503-1519.
[86] Sundaresha S, Manoj Kumar A, Rohini S, et al.2010. En‐ hanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus fla- vus in transgenic groundnut over-expressing a tobacco β1-3 glucanase[J]. European Journal of Plant Pathology,126(4): 497-508.
[87] Sytwala S, Günther F, Melzig M F.2015. Lysozyme- and chi‐ tinase activity in latex bearing plants of genus Euphor‐bia-A contribution to plant defense mechanism[J]. Plant Physiology and Biochemistry, 95: 35-40.
[88] Taif S, Zhao Q, Pu L M, et al.2020. A β -1, 3-glucanase gene from Panax notoginseng confers resistance in tobacco to Fusarium solani[J]. Industrial Crops and Products, 143:111947.
[89] Taira T, Hayashi H, Tajiri Y, et al.2009. A plant class V chitin‐ ase from a cycad (Cycas revoluta): biochemical charac‐ terization, cDNA isolation, and posttranslational modifi‐ cation[J]. Glycobiology, 19(12): 1452-1461.
[90] Taira T, Toma N, Ichi M, et al.2014. Tissue distribution, syn‐ thesis stage, and ethylene induction of pineapple (Anan- as comosus) chitinases[J]. Bioscience, Biotechnology, and Biochemistry, 69(4): 852-854.
[91] Takahashi W, Fujimori M, Miura Y, et al.2005. Increased re‐ sistance to crown rust disease in transgenic Italian rye‐ grass (Lolium multiflorum Lam.) expressing the rice chi‐ tinase gene[J]. Plant Cell Reports, 23(12): 811-818.
[92] Tyler L, Bragg J N, Wu J, et al.2010. Annotation and compar‐ ative analysis of the glycoside hydrolase genes in Brachypodium distachyon[J]. BMC Genomics, 11(1):600.
[93] Van de Rhee M D, Lemmers R, Bol J F.1993. Analysis of regulatory elements involved in stress-induced and organ- specific expression of tobacco acidic and basic β -1, 3-glucanase genes[J]. Plant Molecular Biology, 21(3):451-461.
[94] van Kan J A, Joosten M H, Wagemakers C A, et al.1992.Differential accumulation of mRNAs encoding extracel‐ lular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum[J]. Plant Molecular Biology, 20(3): 513-527.
[95] van Loon L C.1985. Pathogenesis-related proteins[J]. Plant Molecular Biology, 4(2-3): 111-116.
[96] Varghese J N, Garrett T P, Colman P M, et al.1994. Three-di‐ mensional structures of two plant beta-glucan endohy‐ drolases with distinct substrate specificities[J]. Proceed‐ ings of the National Academy of Sciences of the USA, 91(7): 2785-2789.
[97] Vogeli U, Meins F J, Boller T.1988. Co-ordinated regulation of chitinase and beta-1, 3-glucanase in bean leaves[J]. Planta, 174(3): 364-372.
[98] Vögeli-Lange R, Fründt C, Hart C M, et al.1994. Develop‐ mental, hormonal, and pathogenesis-related regulation of the tobacco class I β -1, 3-glucanase B promoter[J]. Plant Molecular Biology, 25(2): 299-311.
[99] Wally O, Jayaraj J, Punja Z.2009. Comparative resistance to foliar fungal pathogens in transgenic carrot plants ex‐ pressing genes encoding for chitinase, β -1, 3-glucanase and peroxidise[J]. European Journal of Plant Pathology,123(3): 331-342.
[100] Wan L L, Zha W J, Cheng X Y, et al.2011. A rice β-1,3-gluca‐ nase gene Osg1 is required for callose degradation in pollen development[J]. Planta, 233(2): 309-323.
[101] Ward E R, Payne G B, Moyer M B, et al.1991. Differential regulation of β -1, 3-glucanase messenger RNAs in re‐ sponse to pathogen infection[J]. Plant Physiology, 96(2): 390-397.
[102] Wojtkowiak A, Witek K, Hennig J, et al.2013. Structures of an active-site mutant of a plant 1,3-β-glucanase in com‐ plex with oligosaccharide products of hydrolysis[J]. Acta Crystallographica Section D Biological Crystallogra‐ phy, 69(1): 52-62.
[103] Wróbel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, et al.2004. Expression of β -1, 3-glucanase in flax causes increased resistance to fungi[J]. Physiological and Mo‐ lecular Plant Pathology, 65(5): 245-256.
[104] Wu C, Bradford K J.2003. Class I Chitinase and β-1,3-gluca‐ nase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves[J]. Plant Physiology, 133(1): 263-273.
[105] Wu J H, Zhang X L, Luo X L, et al.2004. Transgenic cotton plants of chitinase and glucanase genes and their performance of resistance to Verticillium dahliea[J]. Acta Genetica Sinica, 31(2): 183-188.
[106] Xiao Y H, Li X B, Yang X Y, et al.2007. Cloning and charac‐ terization of a balsam pear class I chitinase gene (Mc- chit1) and its ectopic expression enhances fungal resis‐ tance in transgenic plants[J]. Bioscience, Biotechnology and Biochemistry, 71(5): 1211-1219.
[107] Xie Y R, Raruang Y, Chen Z Y, et al.2015. ZmGns, a maize class I β-1,3-glucanase, is induced by biotic stresses and possesses strong antimicrobial activity[J]. Journal of In‐ tegrative Plant Biology, 57(3): 271-283.
[108] Zavaleta V, Eyzaguirre J.2016. Penicillium purpurogenum produces a highly stable endo- β - (1, 4) -galactanase[J]. Applied Biochemistry and Biotechnology, 180(7): 1313-1327.
[109] Zhang C W, Huang M Y, Sang X C, et al.2019a. Association between sheath blight resistance and chitinase activity in transgenic rice plants expressing McCHIT1 from bitter melon[J]. Transgenic Research, 28(3-4): 381-390.
[110] Zhang F L, Ruan X L, Wang X, et al.2016. Overexpression of a chitinase gene from Trichoderma asperellum increases disease resistance in transgenic soybean[J]. Applied Bio‐ chemistry and Biotechnology, 180(8): 1542-1558.
[111] Zhang S B, Zhang W J, Zhai H C, et al.2019b. Expression of a wheat β-1,3-glucanase in Pichia pastoris and its inhibi‐ tory effect on fungi commonly associated with wheat kernel[J]. Protein Expression and Purification, 154: 134-139.
[112] Zheng T, Zhang K, Sadeghnezhad E, et al.2020. Chitinase family genes in grape differentially expressed in a man‐ ner specific to fruit species in response to Botrytis cinerea [J]. Molecular Biology Reports, 47(10): 7349-7363.
[113] Zhong X, Feng P, Ma Q, et al.2021. Cotton chitinase gene GhChi6 improves the arabidopsis defense response to aphid attack[J]. Plant Molecular Biology Reporter, 39(1): 251-261.
[114] Zhu M, Lu S, Zhuang M, et al.2021. Genome-wide identification and expression analysis of the Brassica oleracea L. Chitin-binding genes and response to pathogens infec‐ tions[J]. Planta, 253(4): 80.
[115] Zhu Q, Maher E A, Masoud S, et al.1994. Enhanced protec‐ tion against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco[J]. Nature Biotechnology, 12(8): 807-812.