Effect of LncRNA TCONS_00153149 Gene in the Process of Melanin Deposition in Youzhou Black Goat (Capra hircus)
ZHANG Li1, LI Jie1, FU Lin1, LIU Li2, YANG Heng3, WANG Gao-Fu1, REN Hang-Xing1, ZHOU Peng1, DONG Xian-Wen1,*
1 Chongqing Academy of Animal Sciences/Chongqing Engineering Research Center for Goat, Rongchang 402460, China; 2 Chongqing Chemical Industry Vocational College, Changshou 401228, China; 3 College of Veterinary Medicine, Southwest University, Rongchang 402460, China
Abstract:LncRNA was widely transcribed in the mammalian genome and promote the proliferation, invasion and metastasis of skin malignant melanoma through a variety of regulatory pathways. To further explore the effect of LncRNA TCONS_00153149 gene on the process of melanin deposition in Youzhou Black goat (Capra hircus), the tissue expression profile of LncRNA TCONS_00153149 were detected using qPCR method in different tissues of Youzhou dark goat and Yudong white goat, as well as the LncRNA TCONS_ 00153149 expression characteristics were detected in B16-F10 cells at differentiation stage stages, the LncRNA TCONS_00153149 lentiviral vector was constructed and transfected into B16-F10 melanocytes to explore the effect on the process of melanin deposition. The results demonstrated that LncRNA TCONS_00153149 was widely expressed in different tissues of the goat, especially with significantly higher expression in the skin in Youzhou black goat than that of Yudong white goat (P<0.01). Comparison analysis illustrated that the expression pattern of the LncRNA TCONS_00153149 was increasing in the early stage of melanocyte differentiation, and reached the highest relative expression on the 3rd day, and then decreasing after that, the expression was the lowest on the 7th day. The expression on the 3rd day was significantly higher than that of the 0, 1, and 7 days (P<0.01), showed that LncRNA TCONS_00153149 have a positive regulatory relationship to melanin deposition. The transfection experiment found that the relative expression of LncRNA TCONS_ 00153149 gene was extremely significantly increased (P<0.01), and the melanin content was significantly increased compared with the negative control group (NC), these results verified the significant promotion effect of LncRNA TCONS_00153149 gene on melanin deposition. Besides, The relative expression of TYRosinase related protein 1 (TYRP1), microphthalmia-associated transcription factor (MITF), TYRosinase- related protein 2 (TYRP2) was significantly increased (P<0.05), and the relative expression of agouti signaling protein (ASIP) was extremely significantly reduced (P<0.01). Combined with the results of the interaction between LncRNA and target genes by RNA2.0.0 software, this study showed that the LncRNA TCONS_00153149 gene had a positively effect on the deposition of melanin by targeting and enhancing the function of melanin candidate genes (TYRP1, TYRP2, MITF, ASIP). This study provides data for the study of the LncRNA regulation theory related to goat skin coloring.
张丽, 李杰, 付琳, 刘丽, 杨恒, 王高富, 任航行, 周鹏, 董贤文. LncRNA TCONS_00153149基因在酉州乌羊皮肤黑色素沉积过程中的作用[J]. 农业生物技术学报, 2022, 30(5): 908-917.
ZHANG Li, LI Jie, FU Lin, LIU Li, YANG Heng, WANG Gao-Fu, REN Hang-Xing, ZHOU Peng, DONG Xian-Wen. Effect of LncRNA TCONS_00153149 Gene in the Process of Melanin Deposition in Youzhou Black Goat (Capra hircus). 农业生物技术学报, 2022, 30(5): 908-917.
[1] 付琳, 任航行, 王高富, 等 . 2020. 酉州乌羊LncRNA XLOC_ 15448 的组织表达及其在黑色素沉积过程中互作分子的预测[J]. 农业生物技术学报, 28(08): 1441-1449. (Fu L, Ren H H, Wang G F, et al.2020. Tissue expression of LncRNA XLOC_15448 in Youzhou black sheep and prediction of its interaction molecules in the process of melanin deposition[J]. Journal of Agricultural Biotechnology, 28(08): 1441-1449.) [2] 黄洁萍 .2016. 利用大鼠模型定位先天性巨结肠症及色素异常相关易感基因的研究[D]. 博士学位论文, 西北农林科技大学, 导师: 雷初朝, pp. 27-28. (Huang J P.2016. Research on locating susceptibility genes related to Hirschsprung's disease and pigment ab normalities using a rat model[D]. Thesis for Ph.D., Northwest A&F University, Supervisor: Lei C C, pp. 27-28.) [3] 蒋婧, 李杰, 周鹏, 等 . 2020a. HOTAIR 与山羊皮肤黑色素沉积的关系及体外表达规律的研究[J]. 畜牧兽医学报, 51(03): 465-474. (Jiang J, Li J, Zhou P, et al.2020.Study on the relationship between HOTAIR and goat skin melanin deposition and its expression in vitro[J]. Journal of Animal Husbandry and Veterinary Medicine, 51(03): 465-474.) [4] 蒋婧, 任航行, 李杰, 等 . 2019. 色素关键基因在山羊皮肤和 B16-F10 细胞增殖 、分化阶段的表达及相关性研究[J]. 西南农业学报, 32(09): 2226-2232. (Jiang J, Li J, Zhou P, et al. 2020. Expression
analysis of MC1R gene in goat skin tissue and B16-F10 cells[J]. Heilongjiang Animal Science and Veterinary Medicine, 4(15): 13-17.) [5] 刘猛 .2015. 渝东白山羊品种资源调查[J]. 中国畜牧业 , (01): 57-58. (Liu M. 2015. Investigation of Yudong White goat resources[J]. China Animal Industry, (01): 57-58.) [6] 滕培英, 亢涛, 辛斯琪, 等 . 2021. 长链非编码 RNA (Ln‐cRNA)参与天然免疫应答调控机制的研究进展[J]. 细胞与分子免疫学杂志 , 37(02): 185-190. (Teng P Y, Kang T, Xin S Q, et al.2021. Research progress of long non-coding RNA (LncRNA) involved in the regulation of natural immune response[J]. Journal of Cellular and Molecular Immunology, 37(02): 185-190.) [7] 王蓉, 袁涛 . 2021. 长链非编码 RNA 在恶性黑色素瘤侵袭和转移中作用的研究进展[J]. 中国肿瘤生物治疗杂志 , 28(03): 311-316. (Wang R, Yuan T.2021. Research progress on the role of long non-coding RNA in the invasion and metastasis of malignant melanoma[J]. Chinese Journal of Cancer Biotherapy, 28(03): 311-316.) [8] 徐伟, 封竣淇, 黄兰, 等 . 2017. TYR 基因研究进展[J]. 中国畜牧杂志 , 53(04): 23-27. (Xu W, Feng J Q, Huang L, et al.2017. Research progress on TYR gene[J]. Chinese Journal of Animal Science, 53(04): 23-27.) [9] 赵金红, 王高富, 陈静, 等 . 2012. 酉州乌羊胚胎移植效果初报[J]. 上海畜牧兽讯, (1): 25-25. (Zhao J H, Wang G F, Chen J, et al. 2012. Preliminary report on the effect of embryo transfer in Youzhou black goat[J]. Shanghai Animal Husbandry News, (1): 25-25.) [10] 周鹏, 王高富, 任航行, 等 . 2013. 酉州乌羊遗传资源的保护对策[J]. 上海畜牧兽医通讯 , (5): 75-75. (Zhou P, Wang G F, Ren H H, et al. 2013. Conservation countermeasures for genetic resources of Youzhou black goat [J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, (5): 75-75) [11] Ainger S A, Jagirdar K, Lee K J, et al.2017. Skin pigmentation genetics for the clinic[J]. Dermatology (Basel, Switzerland), 233(1): 1-15. [12] Chen T, Zhao B, Liu Y, et al.2018. MITF-M regulates melanogenesis in mouse melanocytes[J]. Journal of Dermatological Science, 90(3): 253-262. [13] Chi Y, Wang D, Wang J, et al.2019. Long non-coding RNA in the pathogenesis of cancers[J]. Cells, 8(9): E1015. [14] Cho M, Ryu M, Jeong Y, et al.2009. Cardamonin suppresses melanogenesis by inhibition of Wnt/beta-catenin signaling[J]. Biochemical and Biophysical Research Communications, 390(3): 500-505. [15] Fang Y, Fullwood M J.2016. Roles, functions, and mechanisms of long non-coding RNAs in cancer[J]. Genomics Proteomics Bioinformatics, 14(1): 42-54. [16] Kim E D, Sung S.2012. Long noncoding RNA: Unveiling hidden layer of gene regulatory networks[J]. Trends Plant Science, 17(l): 16-21. [17] Makpol S, Jam F A, Rahim N A, et al.2014. Comparable down-regulation of TYR, TYRP1 and TYRP2 genes and inhibition of melanogenesis by TYRostat, tocotrienol-rich fraction and tocopherol in human skin melanocytes improves skin pigmentation[J]. La Clinica Terapeutica, 165(1): e39-e45. [18] Martin M, Patrick R W, Rolf B.2017. IntaRNA 2.0: Enhanced and customizable prediction of RNA-RNA interactions[J]. Nucleic Acids Research, 45(1), 435-439. [19] Nhu T N, David E F.2019. MITF and UV responses in skin: From pigmentation to addiction[J]. Pigment Cell & Melanoma Research, 32(2): 224-236. [20] Novak J, Vašků J B, Souček M.2018. Long non-coding RNAs in the pathophysiology of atherosclerosis[J]. Vnitrni lekarstvi, 64(1): 77-82. [21] Ozal B, Ilgiz G, Valentin P, et al.2020. The role of long noncoding RNAs in the biology of pituitary adenomas[J]. World Neurosurg, 137: 252-256. [22] Ren H X, Wang G F, Chen L, et al.2016. Genome-wide analysis of long non-coding RNAs at early stage of skin pig‐mentation in goats (Capra hircus)[J]. BMC Genomics,17(1): 67. [23] Shang S Y, Yu Y, Zhao Y X, et al.2019. Synergy between MC1R and ASIP for coat color in horses (Equus caballus)[J]. Journal of Animal Science, 97(4): 1578-1585. [24] Simon J D, Peles D N.2010. The red and the black[J]. Accounts of Chemical Research, 43(11): 1452-1460. [25] Slominski A, Tobin D J, Shibahara S, et al.2004. Melanin pigmentation in mammalian skin and its hormonal regulation[J]. Physiological Reviews, 84(4): 1155-1228. [26] Wu L, Zhu L, Li Y, et al.2020. LncRNA MEG3 promotes melanoma growth, metastasis and formation through modulating MiR-21/E-cadherin axis[J]. Cancer Cell International, 20: 12. [27] Yamaguchi Y, Passeron T, Hoashi T, et al.2008. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes[J]. FASEB Journal, 22(4): 1009-1020. [28] Yang Z, Jiang S, Shang J, et al.2019. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging[J]. Ageing Research Reviews, 52: 17-31. [29] Yu X, Zheng H, Tse G, et al.2018. Long non-coding RNAs in Melanoma[J]. Cell Proliferation, 51(4): e12457. [30] Zhang X P, Wang W, Zhu W D, et al.2019. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels[J]. International Journal of Molecular Sciences, 20(22): 5573.