Research Progress on The Role of Deubiquitination Modification in Viral Infection
ZHAO Tian-Yu1, HAN Cheng-Gui2,*
1 China National Center for Biotechnology Development, Beijing 100039, China; 2 College of Plant Protection, China Agricultural University, Beijing 100193, China
Abstract:Deubiquitination is the reverse process of ubiquitination. Deubiquitinase (DUB) removed the ubiquitination of substrates, thereby regulating various life processes. In recent years, more and more reports have shown that deubiquitination could regulate viral infection. In this paper, the current research on how deubiquitination regulates the infection of plant virus and animal virus is reviewed from four aspects including types, function characteristics, regulatory roles in vivo, and regulatory roles in viral infection of DUBs, Some suggestions are made for further study on how deubiquitination regulate viral infection.
赵添羽, 韩成贵. 去泛素化修饰在病毒侵染中的作用研究进展[J]. 农业生物技术学报, 2022, 30(10): 2025-2035.
ZHAO Tian-Yu, HAN Cheng-Gui. Research Progress on The Role of Deubiquitination Modification in Viral Infection. 农业生物技术学报, 2022, 30(10): 2025-2035.
[1] Alcaide-Loridan C, Jupin I.2012. Ubiquitin and plant viruses, let's play together![J]. Plant Physiology, 160(1): 72-82. [2] Ali A, Raja R, Farooqui S R, et al.2017. USP7 deubiquitinase controls HIV-1 production by stabilizing tat protein[J]. Biochemical Journal, 474(10): 1653-1668. [3] Bailey-Elkin B A, van Kasteren P B, Snijder E J, et al.2014. Viral OTU deubiquitinases: A structural and functional comparison[J]. PLoS Pathogens, 10(3): e1003894. [4] Cai B, Zhao J, Zhang Y, et al.2022. USP5 attenuates NLRP3 inflammasome activation by promoting autophagic degradation of NLRP3[J]. Autophagy,18(5):990-1004 [5] Camborde L, Planchais S, Tournier V, et al.2010. The ubiquitin-proteasome system regulates the accumulation of Turnip yellow mosaic virus RNA-dependent RNA polymerase during viral infection[J]. Plant Cell, 22(9): 3142-3152. [6] Chamovitz D A, Wei N, Osterlund M T, et al.1996. The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch[J]. Cell, 86(1): 115-121. [7] Chenon M, Camborde L, Cheminant S, et al.2012. A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity[J]. Embo Journal, 31(3): 741-753. [8] Costa M C, Paulson H L.2012. Toward understanding machado-joseph disease[J]. Progress in Neurobiology, 97(2): 239-257. [9] de Los S T, Diaz-San S F, Grubman M J.2007. Degradation of nuclear factor kappa B during Foot-and-mouth disease virus infection[J]. Journal of Virology, 81(23): 12803-12815. [10] Ewan R, Pangestuti R, Thornber S, et al.2011. Deubiquitinating enzymes AtUBP12 and AtUBP13 and their tobacco homologue NtUBP12 are negative regulators of plant immunity[J]. New Phytologist, 191(1): 92-106. [11] Feng W, Sun X, Shi N, et al.2017. Influenza A virus NS1 protein induced A20 contributes to viral replication by suppressing interferon-induced antiviral response[J]. Biochemical and Biophysical Research Communications, 482(4): 1107-1113. [12] Flierman D, van der Heden V N G, Ekkebus R, et al.2016. Non-hydrolyzable diubiquitin probes reveal linkage-specific reactivity of deubiquitylating enzymes mediated by S2 pockets[J]. Cell Chemical Biology, 23(4): 472-482. [13] Frias-Staheli N, Giannakopoulos N V, Kikkert M, et al.2007. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses[J]. Cell Host & Microbe, 2(6): 404-416. [14] Glickman M H, Rubin D M, Coux O, et al.1998. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eif3[J]. Cell, 94(5): 615-623. [15] Hilterbrand A T, Boutz D R, Marcotte E M, et al.2017. Murine cytomegalovirus deubiquitinase regulates viral chemokine levels to control inflammation and pathogenesis[J]. MBio, 8(1): e01864-16. [16] Hou J, Han L, Zhao Z, et al.2021. USP18 positively regulates innate antiviral immunity by promoting K63-linked polyubiquitination of MAVS[J]. Nature Communications, 12(1): 2970. [17] Hu H, Sun S C.2016. Ubiquitin signaling in immune responses[J]. Cell Research, 26(4): 457-483. [18] Jeong J S, Jung C, Seo J S, et al.2017. The deubiquitinating enzymes UBP12 and UBP13 positively regulate MYC2 levels in jasmonate responses[J]. Plant Cell, 29(6): 1406-1424. [19] Ji S, Luo Y, Cai Q, et al.2019. LC domain-mediated coalescence is essential for OTU enzymatic activity to extend Drosophila lifespan[J]. Molecular Cell, 74(2): 363-377. [20] Jiang J, Tang H.2010. Mechanism of inhibiting type I interferon induction by Hepatitis B virus X protein[J]. Protein & Cell, 1(12): 1106-1117. [21] Jupin I, Ayach M, Jomat L, et al.2017. A mobile loop near the active site acts as a switch between the dual activities of a viral protease/deubiquitinase[J]. PLoS Pathogens, 13(11): e1006714. [22] Kim W, Bennett E J, Huttlin E L, et al.2011. Systematic and quantitative assessment of the ubiquitin-modified proteome[J]. Molecular Cell, 44(2): 325-340. [23] Komander D, Clague M J, Urbe S.2009. Breaking the chains: Structure and function of the deubiquitinases[J]. Nature Reviews Molecular Cell Biology, 10(8): 550-563. [24] Kumar S, Yoshida Y, Noda M.1993. Cloning of a cDNA which encodes a novel ubiquitin-like protein[J]. Biochemical and Biophysical Research Communications, 195(1): 393-399. [25] Liu Q, Yan T, Tan X, et al.2022. Genome-wide identification and gene expression analysis of the OTU DUB family in Oryza sativa[J]. Viruses, 14(2): 392. [26] Lombardi C, Ayach M, Beaurepaire L, et al.2013. A compact viral processing proteinase/ubiquitin hydrolase from the OTU family[J]. PLoS Pathogens, 9(8): e1003560. [27] Mevissen T E, Hospenthal M K, Geurink P P, et al.2013. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis[J]. Cell, 154(1): 169-184. [28] Mevissen T, Komander D.2017. Mechanisms of deubiquitinase specificity and regulation[J]. Annual Review of Biochemistry, 86: 159-192. [29] Park S H, Jeong J S, Seo J S, et al.2019. Arabidopsis ubiquitin-specific proteases UBP12 and UBP13 shape ORE1 levels during leaf senescence induced by nitrogen deficiency[J]. New Phytologist, 223(3): 1447-1460. [30] Popp M W, Artavanis-Tsakonas K, Ploegh H L.2009. Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations[J]. Journal of Biological Chemistry, 284(6): 3593-3602. [31] Que Y, Xu Z, Wang C, et al.2020. The putative deubiquitinating enzyme MoUbp4 is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae[J]. Current Genetics, 66(3): 561-576. [32] Rajsbaum R, Garcia-Sastre A.2013. Viral evasion mechanisms of early antiviral responses involving regulation of ubiquitin pathways[J]. Trends in Microbiology, 21(8): 421-429. [33] Sato Y, Yoshikawa A, Yamagata A, et al.2008. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains[J]. Nature, 455(7211): 358-362. [34] Schaefer J B, Morgan D O.2011. Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes[J]. Journal of Biological Chemistry, 286(52): 45186-45196. [35] Shin D, Mukherjee R, Grewe D, et al.2020. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity[J]. Nature, 587(7835): 657-662. [36] Song H, Zhao C, Yu Z, et al.2020. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression[J]. Nature Communications, 11(1): 6042. [37] Sridhar V V, Kapoor A, Zhang K, et al.2007. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination[J]. Nature, 447(7145): 735-738. [38] van Gent M, Braem S G, de Jong A, et al.2014. Epstein-barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling[J]. PLoS Pathogens, 10(2): e1003960. [39] van Kasteren P B, Beugeling C, Ninaber D K, et al.2012. Arterivirus and Nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling[J]. Journal of Virology, 86(2): 773-785. [40] Wang D H, Song W, Wei S W, et al.2018. Characterization of the ubiquitin C-terminal hydrolase and ubiquitin-specific protease families in rice (Oryza sativa)[J]. Frontiers in Plant Science, 9: 1636. [41] Wang D, Fang L, Li P, et al.2011. The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase[J]. Journal of Virology, 85(8): 3758-3766. [42] Wang P, Li J, Gong P, et al.2018. An OTU deubiquitinating enzyme in Eimeria tenella interacts with eimeria tenella virus RdRp[J]. Parasit Vectors, 11(1): 74. [43] Xing Y, Chen J, Tu J, et al.2013. The papain-like protease of Porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase[J]. Journal of General Virology, 94(Pt 7): 1554-1567. [44] Yang P, Smalle J, Lee S, et al.2007. Ubiquitin C-terminal hydrolases 1 and 2 affect shoot architecture in Arabidopsis[J]. Plant Journal, 51(3): 441-457. [45] Yang Z, Xian H, Hu J, et al.2015. USP18 negatively regulates NF-kappaB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms[J]. Scientific Reports, 5: 12738. [46] Ye Y, Akutsu M, Reyes-Turcu F, et al.2011. Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21[J]. EMBO Reports, 12(4): 350-357. [47] Ye Y, Blaser G, Horrocks M H, et al.2012. Ubiquitin chain conformation regulates recognition and activity of interacting proteins[J]. Nature, 492(7428): 266-270. [48] Zang Y, Gong Y, Wang Q, et al.2020. Arabidopsis OTU1, a linkage-specific deubiquitinase, is required for endoplasmic reticulum-associated protein degradation[J]. Plant Journal, 101(1): 141-155. [49] Zhou Z, Cai X, Zhu J, et al.2021. Zebrafish otud6b negatively regulates antiviral responses by suppressing K63-linked ubiquitination of irf3 and irf7[J]. Journal of Immunology, 207(1): 244-256. [50] Zinngrebe J, Montinaro A, Peltzer N, et al.2014. Ubiquitin in the immune system[J]. EMBO Reports, 15(1): 28-45.