Correlation Analysis Between Amino Acid Content in Bovine (Bos taurus) Seminal Plasma and Sperm Motility
LI Xin, HAN Bi-Ying, YANG Ming, ZHANG Xue-Li, HAI Chao, LI Guang-Peng, ZHAO Yue-Fang*
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
Abstract:Cryopreservation of semen plays a vital role in accelerating genetic improvement and elite breeding, but it has a detrimental effect on sperm quality. In order to explore the key factors related to sperm freezing tolerance in seminal plasma, in this study, the semen of 5 Luxi cattle (Bos taurus) and 5 Mongolian cattle were collected, semen volume, sperm density, sperm motility and other indicators were systematically detected and analyzed, and the contents of various amino acids in seminal plasma were quantitatively analyzed by HPLC. The results showed that the average semen volume of 10 cattle was 4.85 mL, the average sperm density was 1.376 billion pieces/mL, the vitality of fresh sperm and frozen sperm were 69.67% and 35.68% respectively, and the concentration of total amino acids in seminal plasma ranged from 25 to 54 mg/mL, and Mongolian cattle were higher than Luxi cattle; The correlation analysis between the concentration of amino acids in seminal plasma and sperm motility showed that the concentrations of Tyr, Phe, Ser, Arg, Thr and Cys were significantly correlated with frozen sperm motility, and Pearson correlation coefficient r values were 0.743, 0.755, 0.662, 0.649, 0.725 and 0.729, respectively (P<0.05), and the concentration of Pro was extremely significantly correlated with frozen sperm motility (r=0.768, P<0.01). In conclusion, the detection of amino acid content in seminal plasma can be used as a potential index to evaluate the freezing tolerance of bovine sperm. This study provides theoretical basis for further improving the quality of frozen sperm.
[1] 白玲, 谢琦, 佘尚扬, 等. 2012. 精子抗原肽的合成及其在酶联免疫吸附法检测抗精子抗体中的应用价值[J]. 中国计划生育学杂志, 20(08): 544-547. (Bai L, Xie Q, She S Y, et al.2012. Synthesis of sperm antigen peptides and its application in detection of antisperm-antibodies[J]. Chinese Journal of Family Planning, 20(08): 544-547.) [2] 陈晓英, 马金英, 宋天增, 等. 2016. 半胱胺对4 ℃保存藏猪精液指标的影响[J]. 养猪, (06): 22-24. (Chen X Y, Ma J Y, Song T Z, et al. 2016. Effect of cysteamine on tibetan boar semen preserved at 4 ℃ and antioxidative[J]. Swine Production, (06): 22-24.) [3] 程彩虹, 岳文斌, 任有蛇, 等. 2012. 稀释液中添加半胱氨酸对绵羊冷冻精液品质的影响[J]. 中国草食动物, 32(01): 29-31. (Chen C H, Yue W B, Ren Y S, et al.2012. Effects of cysteine addition in diluents on frozen-thaw semen quality of sheep[J]. China Herbivore Science, 32(01): 29-31.) [4] 贺丽萍, 罗红梅, 李美香, 等. 2002. L-精氨酸与N-硝基L-精氨酸甲基酯对雄性大鼠睾酮分泌的影响[J]. 中国计划生育学杂志, (03): 152-154. (He L P, Luo H M, Li M X, et al. 2002. The study effect of the N-nitro-L-arginine-mythel-ester and L-arginine on the in vivo release of testosterone in male rats[J]. Chinese Journal of Family Planning, (03): 152-154.) [5] 何流琴, 金顺顺, 周锡红, 等. 2020. 丝氨酸对动物机体健康的影响研究进展[J]. 动物营养学报, 32(10): 4480-4490. (He L Q, Jin S S, Zhou X H, et al.2020. Research progress on effects of serine on animal health[J]. Chinese Journal of Animal Nutrition, 32(10): 4480-4490.) [6] 胡传活, 杨俊涛, 卢晟盛, 等. 2007. 丙氨酸、半胱氨酸及精氨酸对牛精液冷冻效果的影响[J]. 湖北农业科学, (01): 102-106. (Hu C H, Yang J T, Lu S S, et al. 2007. Effect of alanine, cysteine and arginine on cryopreservation of bull semen[J]. Hubei Agricultural Sciences, (01): 102-106.) [7] 胡启蒙, 何群, 何建云, 等. 2020. 哺乳动物获能精子蛋白酪氨酸磷酸化研究进展[J]. 家畜生态学报, 41(01): 9-13. (He Q M, He Q, He J Y, et al.2020. Research progress of protien tyrosine phosphorylation of capacitated mammalian sperm[J]. Journal of Domestic Animal Ecology, 41(01): 9-13.) [8] 井文倩, 张宁波, 李福昌. 2014. 赖氨酸对种公兔精液品质和血液生化指标的影响[J]. 饲料研究,(05): 38-39; 59. (Jing W Q, Zhang N B, Li F C.2014. Effects of lysine on semen quality and blood biochemical indexes of male rabbits[J]. Feed Research,(05): 38-39; 59.) [9] 李光鹏, 白春玲, 魏著英, 等. 2020. 黄牛Myostatin基因编辑研究[J]. 内蒙古大学学报(自然科学版), 51(01): 12-32. (Li G P, Bai C L, Wei Z Y, et al.2020. Study of myostatin gene-editingin Chinese yellow cattle[J]. Journal of Inner Mongolia University (Natural Science Edition), 51(01): 12-32.) [10] 李红. 2015. 日粮中添加赖氨酸和苏氨酸对提高种公犬精液品质的效果研究[J]. 畜牧与饲料科学, 36(03): 28. (Li H.2015. Effect of dietary lysine and threonine on improving semen quality of male dogs[J]. Animal Husbandry and Feed Science, 36(03): 28.) [11] 刘春丽, 韩碧莹, 李光鹏, 等. 2020. 种公牛的饲养管理[J]. 中国牛业科学, 46(04): 63-68. (Liu C L, Han B Y, Li G P, et al.2020. Care and management of breeding bulls[J]. China Cattle Science, 46(04): 63-68.) [12] 刘剑锟. 2010. 饲料中氨基酸含量对大约克公猪精子活力的影响[J]. 养殖与饲料, (01): 44-45. (Liu J K. 2010. Effect of amino acid content in feed on sperm motility of large yorkshire boars[J]. Animals Breeding and Feed, (01): 44-45.) [13] 罗芳, 郭延生, 马志远, 等. 2019. 基于UPLC-Q-TOF MS代谢组学技术筛选表征西门塔尔种公牛精子活力的候选生物标志物[J]. 畜牧兽医学报, (08): 1596-1606. (Luo F, Guo Y S, Ma Z Y, et al. 2019. Selection of candidate biomarkers featuring sperm motility in simmental bull based on UPLC-Q-TOF MS metabolomics[J]. Acta Veterinaria at Zootechnica Sinica, (08): 1596-1606.) [14] 王娜, 张洁, 海超, 等. 2021. 牛精子冷冻损伤及其改善方法[J]. 中国畜牧兽医, 48(06): 2101-2112. (Wang N, Zhang J, Hai C, et al.2021. Cryo-damage of bovine sperm and its improvement[J]. China Animal Husbandry & Veterinary Medicine, 48(06): 2101-2112.) [15] 徐学玉, 罗仁武, 王珂, 等. 2017. 精氨酸对雄性动物繁殖性能的影响[J]. 畜牧与兽医, 49(09): 121-124. (Xu X Y, Luo R W, Wang K, et al.2017. Effect of arginine on male reproductive performance[J]. Animal Husbandry & Veterinary Medicine, 49(09): 121-124.) [16] 喻宗岗, 蒋隽, 燕海峰, 等. 2019. 畜禽精液冷冻损伤保护研究进展[J]. 中国畜牧杂志, 55(02): 33-38. (Yu Z G, Jiang J, Yan H F, et al.2019. Research progress on frozen damage protection of semen in livestock and poultry[J]. Chinese Journal of Animal Science, 55(02): 33-38.) [17] 张芳毓, 王楠, 王春安, 等. 2009. 精氨酸的生物学功能[J]. 饲料研究, (02): 16-18. (Zhang F Y, Wang N, Wang C A, et al. 2009. Biological function of arginine[J]. Feed Research, (02): 16-18.) [18] 张倩雲, 王鹏飞, 从光雷, 等. 2021. 硒与酪氨酸对凌云乌鸡抗氧化功能、免疫球蛋白、酪氨酸酶活性和黑色素含量的影响[J]. 饲料工业, 42(14): 20-27. (Zhang Q Y, Wang P F, Cong G L, et al.2021. Effects of selenium and tyrosine on antioxidant function, immuno globulin tyrosinase active and melanin deposition of lingyun black bone chicken[J]. Feed Industry, 42(14): 20-27.) [19] Ahmed-Farid O, Nasr M, Ahmed R F, et al.2017. Beneficial effects of curcumin nano-emulsion on spermatogenesis and reproductive performance in male rats under protein deficient diet model: Enhancement of sperm motility, conservancy of testicular tissue integrity, cell energy and seminal plasma amino acids content[J]. Journal of Biomedical Science, 24(1): 66. [20] Castiglione Morelli M A, Ostuni A, Giangaspero B, et al.2021. Relationships between seminal plasma metabolites, semen characteristics and sperm kinetics in donkey (Equus asinus)[J]. Animals, 11(1): 201. [21] Deng M, Lin F, Zhou C, et al.2020. Determination of 27 amino acids' levels in seminal plasma of asthenospermia and oligospermia patients and diagnostic value analysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 184: 113-211. [22] Dorado J, Acha D, Ortiz I, et al.2014. Effect of extender and amino acid supplementation on sperm quality of cooled-preserved andalusian donkey (Equus asinus) spermatozoa[J]. Animal Reproduction Science, 146(1-2): 79-88. [23] Elango R, Ball R O.2016. Protein and amino acid requirements during pregnancy[J]. Advances in Nutrition (Bethesda, Md.), 7(4): 839-844. [24] Morrell J, Valeanu A, Lundeheim N, et al.2018. Sperm quality in frozen beef and dairy bull semen[J]. Acta Veterinaria Scandinavica, 60: 41. [25] Nie C, He T, Zhang W, et al.2018. Branched chain amino acids: beyond nutrition metabolism[J]. International Journal of Molecular Sciences, 19(4): 954. [26] Öztürk C, Güngör Ş, Ataman M B, et al.2017. Effects of arginine and trehalose on post-thawed bovine sperm quality[J]. Acta Veterinaria Hungarica, 65(3): 429-439. [27] Sangeeta S, Arangasamy A, Kulkarni S, et al.2015. Role of amino acids as additives on sperm motility, plasma membrane integrity and lipid peroxidation levels at pre-freeze and post-thawed ram semen[J]. Animal Reproduction Science, 161: 82-88. [28] Takahara T, Amemiya Y, Sugiyama R, et al.2020. Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes[J]. Journal of Biomedical Science, 27(1): 87.