Study on Improving the Quality of Distiller's Grains Feed by Steam Explosion Combined with Various Microorganisms
FAN En-Di1, FENG Min-Xue1, LI Chen-Yao1, WU De-Guang3, CHEN Ye-Fu1, XIAO Dong-Guang1, GUO Xue-Wu1,2,*
1 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education/Tianjin Industrial Microbiology Key Laboratory/College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; 2 Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin 644000, China; 3 Department of Brewing Engineering, Moutai Institute, Renhuai 564500, China
Abstract:The yield of distiller's grains is huge, but it is not suitable for storage due to its high acidity and high-water content. Besides, the high proportion of rice husk in distiller's grains makes the fiber content of distiller's grains higher, which increases the difficulty of the utilization of distiller's grains. The resource utilization of distiller's grains is wide, for example, protein feed, fertilizer, chemical products and so on. The distiller's grains feed is the most common, such as silage feed, fly maggot feed, microbial fermentation feed, etc, and microbial fermentation feed is the research hotspot. However, most of distiller's grain feed has a single function, only pursuing high protein content, and other nutrients mainly rely on external addition. This increases the cost of distiller's grains feed, making it difficult to promote, and most of them can only stay at the laboratory level. In this study, the preparation of multifunctional microbial fermentation feed from distiller's grains by steam explosion pretreatment technology combined with microorganisms including Candida utilis, Saccharomyces cerevisiae, Bacillus subtilis, Lactobacillus, and Molds was studied. The distiller's grains treated under different steam explosion conditions were detected and analyzed. The results showed that the steam explosion pretreatment could effectively degrade the hemicellulose and lignin in the distiller's grains, which was beneficial to the reuse of the distiller's grains. The 1.7 MPa pressure treatment for 15 minutes was most conducive to the degradation of hemicellulose and lignin. Compared with untreated distiller's grains, the lignin and hemicellulose contents of distiller's grains treated by the optimum steam explosion conditions decreased by 14.65% and 51.72%, respectively, and the content of reducing sugar increased by 8.66 times. Then according to the ability of producing short chain organic acids and bacteriostasis, the feeding lactic acid bacteria were determined by using 3 strains of lactic acid bacteria combined with S. cerevisiae, C. utilis, B. subtilis and Trichoderma koningii to ferment, respectively. Finally, the optimal combination of S. cerevisiae, C. utilis, L. plantarum, B. subtilis, T. koningii, Aspergillus niger H7, A. niger H1496 and Myceliophthora thermophila was selected from different fermentation combinations of four kinds of molds, with the content of crude protein, crude fiber, nicotinic acid and acetoin as indexes. Compared with the distiller's grains pretreated under the optimized conditions of steam explosion, the content of crude protein and acetone increased by 22.55% and 76.38%, respectively, the content of crude fiber decreased by 17.85%, and the content of niacin reached 0.31 mg/g dry distiller's grains. In addition, there was also an appropriate amount of short chain organic acids, which had a pleasant sour fragrance. The results revealed that the study of multi-functional distiller's grains could not only make up for the lack of protein feed, but also solve the problem of distiller's grains with single function and high cellulose ratio. Therefore, functional distiller's grains feed will become the main research direction of distiller's grains feed in the future, which will help to realize the rational utilization of resources, alleviate the current situation of human and animal food competition, and promote the green development of traditional industries such as Baijiu industry.
[1] 麦热姆妮萨·艾麦尔, 乌斯满·依米提, 阿迪拉·多力坤, 等. 2012. 具有高效抑菌活性的肠道乳酸菌的筛选[J]. 食品工业科技, 33(24): 210-214. (Amar M, Yimit W, Dolkun A, et al.2012. Selection of high-efficient antibacterial intestinal lactic acid bacteria[J]. Science and Technology of Food Industry, 33(24): 210-214.) [2] 蔡国林, 张麟, 陆健. 2015. 利用啤酒糟制备高品质饲料蛋白[J]. 食品与发酵工业, 41(02): 89-94. (Cai G L, Zhang L, Lu J.2015. Study on the preparation of high-quality feedstuffs protein by brewer's spent grain[J]. Food and Fermentation Industries, 41(02): 89-94.) [3] 范恩帝, 蒋梦迎, 冯敏雪, 等. 2021. 混菌发酵白酒糟生产含功能成分饲料发酵条件的优化[J]. 生物技术通报, 37(12): 1-13. (Fan E D, Jiang M Y, Feng M X, et al.2021. Optimization of fermentation conditions for production of feed containing functional components from distiller's grains by mixed bacteria fermentation[J]. Biotechnology Bulletin, 37(12): 1-13.) [4] 冯定远. 2012. 饲料加工及检测技术[M].中国农业出版社, 北京. pp. 117-118. (Feng D Y.2012. Feed Processing and Testing Technology[M]. China Agricultural Press.. Beijing, pp. 117-118.) [5] 郭素环, 周碧君, 文明, 等. 2012. 白酒糟发酵菌种组合的筛选[J]. 饲料工业, 33(15): 17-21. (Guo S H, Zhou B J, Wen M, et al.2012. Screening of fermentation strains of distiller's grains[J]. Feed Industry, 33(15): 17-21.) [6] 蒋亚军, 周凌云, 赵芸君, 等. 2010. 烟酸在反刍动物营养中的研究进展[J]. 中国畜牧兽医, 37(07): 9-14. (Jiang Y J, Zhou L Y, Zhao Y J, et al.2010. An overview of niacin as a feed supplement in ruminant production[J]. China Animal Husbandry & Veterinary Medicine, 37(07): 9-14.) [7] 康鹏, 郑宗明, 董长青, 等. 2010. 木质纤维素蒸汽爆破预处理技术的研究进展[J]. 可再生能源, 28(3): 112-116. (Kang P, Zheng Z M, Dong C Q, et al.2010. Review on steam explosion of lignocellulose for pretreating[J]. Renewable Energy Resiyrces, 28(3): 112-116.) [8] 李刚, 李东亮, 王许涛, 等. 2011. 玉米秸秆蒸汽爆破用于厌氧发酵的技术评价[J]. 农业工程学报, 27(01): 286-290. (Li G, Li D L, Wang X T, et al.2011. Technology evaluation of steam exploded corn stalk anaerobic fermentation[J]. Transactions of the Chinese Society of Agricultural Engineering, 27(01): 286-290.) [9] 李江浩. 2015. 玉米秸秆氢氧化钾及蒸汽爆破耦合预处理厌氧发酵产沼气研究[D]. 硕士学位论文, 北京化工大学, 导师: 刘广青, pp. 55-63. (Li J H.2015. Research on the coupling effect of potassium hydroxide and steam explosion pretreatment on anaerobic digestion of corn stover for biogas production[D]. Thesis for M.S., Beijing University of Chemical Technology, Supervisor: Liu G Q, pp. 55-63.) [10] 李树明, 黄治国, 罗惠波, 等. 2011. 白酒丢糟发酵生产蛋白质饲料的菌种筛选[J]. 西南大学学报:自然科学版, 33(10): 27-30. (Li S M, Huang Z G, Luo H B, et al.2011. Microbial strain screening for liquor spent grain fermentation in protein feed production[J]. Journal of Southwest Agricultural University, 33(10): 27-30.) [11] 李新建, 高腾云, 王永才. 2006. 烟酸在反刍动物营养中的研究进展[J]. 安徽农学通报, 12(03): 133-135. (Li X J, Gao T Y, Wang Y C.2006. Advance of niacin in ruminant nutrition[J]. Anhui Agricultural Bulletin, 12(03): 133-135.) [12] 鲁文普, 杨玉能. 2009. 酒糟的饲料化利用概况[J]. 贵州畜牧兽医, 33(04): 14-15. (Lu W P, Yang Y N.2009. Research survey of feed processing technology of distillers' grains[J]. Guizhou Animal Science and Veterinary Medicine, 33(04): 14-15.) [13] 马霞, 董炎炎, 于海燕. 2015. 酒糟浸出液发酵产细菌纤维素工艺优化[J]. 农业工程学报, 31(8): 302-307. (Ma X, Dong Y Y, Yu H Y.2015. Optimization of bacterial cellulose fermentation technology with distiller's grains[J]. Transactions of the Chinese Society of Agricultural Engineering, 31(8): 302-307.) [14] 齐志国, 郭江鹏, 陈余, 等. 2017. 功能性饲料及其功能因子概述[J]. 饲料研究,(12): 1-7, 12. (Qi Z G, Guo J P, Chen Y, et al.2017. Summary of functional feed and its functional factors[J]. Feed Research,(12): 1-7, 12.) [15] 邱盼盼, 任天宝, 王风芹, 等. 2013. 木质纤维原料蒸汽爆破-生物联合预处理及其生物脱毒研究进展[J]. 生物质化学工程, 47(02): 23-28. (Qiu P P, Ren T B, Wang F Q, et al.2013. Research progress on steam explosion-biological pretreatment of the lignocellulose and simultaneous bio-detoxification[J]. Biomass Chemical Engineering, 47(02): 23-28.) [16] 任大勇, 李昌, 秦艳青, 等. 2011. 乳酸菌益生功能及作用机制研究进展[J]. 中国兽药杂志, 45(02): 47-50. (Ren D Y, Li C, Qin Y Q, et al.2011. Development review on healthy function and potential mechanisms of lactic acid bacteria[J]. Chinese Journal of Veterinary Drug, 45(02): 47-50.) [17] 任海伟, 王莉, 朱朝华, 等. 2020. 白酒糟与菊芋渣混合青贮发酵品质及微生物菌群多样性[J]. 农业工程学报, 36(15): 235-244. (Ren H W, Wang L, Zhu C H, et al.2020. Ensiling co-fermentation quality and microbial community diversity of grain stiller and inulin processing residue from Helianthus tuberosus[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(15): 235-244.) [18] 任天宝, 马孝琴, 徐桂转, 等. 2011. 响应面法优化玉米秸秆蒸汽爆破预处理条件[J]. 农业工程学报, 27(09): 282-286. (Ren T B, Ma X Q, Xu G Z, et al.2011. Optimizing steam explosion pretreatment conditions of corn stalk by response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering, 27(09): 282-286.) [19] 宋善丹, 陈光吉, 饶开晴, 等. 2015. 白酒糟固态发酵条件的筛选及营养价值评定[J]. 中国畜牧杂志, 51(15): 66-70. (Song S D, Chen G J, Rao K Q, et al.2015. Screening of solid-state fermentation conditions for white wine lees and evaluation of nutritional value[J]. Chinese Journal of Animal Science, 51(15): 66-70.) [20] 王巧丽, 季海峰, 韩向敏, 等. 2012. 饲用乳酸菌的主要代谢产物及其作用[J]. 饲料研究, (10): 22-24. (Wang Q L, Ji H F, Han X M, et al. 2012. Main metabolites of lactic acid bacteria for feed and their functions[J]. Feed Research, (10): 22-24.) [21] 王鑫. 2010. 蒸汽爆破预处理技术及其对纤维乙醇生物转化的研究进展[J]. 林产化学与工业, 30(04): 119-125. (Wang X.2010. Progress in steam-explosion pretreatment technologies and its effect on bioconversion of cellulosic ethanol[J]. Chemistry and Industty of Forest Products, 30(04): 119-125.) [22] 谢正军, 曹镜明, 万建华. 2014. 白酒糟饲用价值分析与应用探讨[J]. 饲料工业, 35(12): 51-53. (Xie Z J, Cao J M, Wan J H.2014. Analysis and application of distiller's grains for feed[J]. Feed Industry, 35(12): 51-53.) [23] 熊素敏, 左秀凤, 朱永义. 2005. 稻壳中纤维素、半纤维素和木质素的测定[J]. 粮食与饲料工业, (08): 40-41. (Xiong S M, Zuo X F, Zhu Y Y. 2005. Determination of cellulose, hemi-cellulose and ligin in rice hull[J]. Cereal & Feed Industry, (08): 40-41.) [24] 许丙磊, 彭奇均. 2010. 玉米芯蒸汽爆破处理的研究及响应曲面法优化[J]. 林产化学与工业, 30(6): 82-88. (Xu B L, Peng Q J.2010. Studies on steam explosion of corncob and its optimization by response surface methodology[J]. Chemistry and Industty of Forest Products, 30(6): 82-88.) [25] 闫军, 冯连勋. 2009. 蒸汽爆破技术的研究[J]. 现代农业科技, (11): 278-280. (Yan J, Feng L X. 2009. Study on steam exploded technology[J]. Xiandai Nongye Keji, (11): 278-280.) [26] 余有贵, 曾传广, 贺建华. 2007. 白酒糟开发蛋白质饲料的研究进展[J]. 中国饲料, (1): 15-18. (Yu Y G, Zeng C G, He J H. 2007. Research advances in feed protein exploited from distiller's grains[J]. China Feed, (1): 15-18.) [27] 张连忠. 2011. 酵母固态发酵过程中营养物质变化的研究[J]. 饲料工业, 32(2): 44-46. (Zhang L Z.2011. Studies on changes of nutrients in solid state fermentation of yeast[J]. Feed Industry, 32(2): 44-46.) [28] 张小舟, 曾崇余, 任晓乾. 2001. 乙偶姻合成研究现状及展望[J]. 江苏化工, 29(2): 29-31. (Zhang X Z, Zeng C Y, Ren X Q.2001. Progress on synthesis of acetoin[J]. Jiangsu Chemical Industry, 29(2): 29-31.) [29] 张轩, 赵述淼, 陈海燕, 等. 2012. 酿酒酵母固态发酵白酒糟生产蛋白饲料的研究[J]. 饲料工业, 33(19): 27-31. (Zhang X, Zhao S M, Chen H Y, et al.2012. Study on producing protein feed through the solid state fermentation of distiller's grains with Saccharomyces cerevisiae[J]. Feed Industry, 33(19): 27-31.) [30] 赵凯, 许鹏举, 谷广烨. 2008. 3,5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学, 29(8): 534-536. (Zhao K, Xu P J, Gu G Y.2008. Study on determination of reducing sugar content using 3,5-dinitrosalicylic acid method[J]. Food Science, 29(8): 534-536.) [31] 郑宇, 赵翠梅, 吴亚楠, 等. 2019. 山西老陈醋风味物质组成特征及风味轮分析[J]. 食品科学技术学报, 37(4): 24-34. (Zheng Y, Zhao C M, Wu Y N, et al.2019. Composition of characteristic flavor components and analysis of flavor wheel for shanxi aged vinegar[J]. Journal of Food Science and Technology, 37(4): 24-34.) [32] 朱均均, 勇强, 陈尚钘, 等. 2009. 玉米秸秆蒸汽爆破降解产物的分析[J]. 林产化学与工业, 29(02): 22-26. (Zhu J J, Yong Q, Chen S X, et al.2009. Identification of degraded products from steam-exploded corn stalk[J]. Chemistry and Industty of Forest Products, 29(02): 22-26.) [33] Bae S, Kim S, Hahn J.2016. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase[J]. Scientific Reports, 6(1): 27667. [34] Chen J C, Chen Q H, Guo Q, et al.2010. Simultaneous determination of acetoin and tetramethylpyrazine in traditional vinegars by HPLC method[J]. Food Chemistry, 122(4): 1247-1252. [35] Chen K L, Kho W L, You S H, et al.2009. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers[J]. Poultry Science, 88(2): 309-315. [36] Deepa B, Abraham E, Cherian B M, et al.2011. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion[J]. Bioresource Technology, 102(2): 1988-1997. [37] Janshekar H, Brown C, Fiechter A.1981. Determination of biodegraded lignin by ultraviolet spectrophotometry[J]. Analytica Chimica Acta, 130: 81-91. [38] Jiang R R, Zhao G P, Chen J L, et al.2011. Effect of dietary supplemental nicotinic acid on growth performance, carcass characteristics and meat quality in three genotypes of chicken[J]. Journal of Animal Physiology and Animal Nutrition, 95(2): 137-145. [39] Pielhop T, Amgarten J, von Rohr P R, et al.2016. Steam explosion pretreatment of softwood: The effect of the explosive decompression on enzymatic digestibility[J]. Biotechnology for Biofuels, 9(1): 152. [40] Savvidou S., Beal J.D., La Ragione R.M., et al.2009. Liquid feed fermented with a Lactobacillus strain with probiotic properties, reduces susceptibility of broiler chickens to Salmonella enterica Typhimurium Sal 1344 nalr[C]//, Meeting of the European Association of Animal Production, UK, pp. 565. [41] Subramaniam B, Antony C, Cbt R, et al.2019. Functional feed additives used in fish feeds[J]. International Journal of Fisheries and Aquatic Studies, 7: 44-52. [42] Vecino J L G, Wadsworth S.2009. Functional feed composition. United States, EP20090735856[P]. [43] Wang Z, Ren P, Lin W G, et al.2012. Composition of the liquid product by pyrolysis of dried distiller's grains with solubles[J]. Journal of Analytical and Applied Pyrolysis, 98: 242-246. [44] Yang F J, Hou C L, Zeng X F, et al.2015. The use of lactic acid bacteria as a probiotic in Swine diets[J]. Pathogens (Basel, Switzerland), 4(1): 34-45. [45] Yang Z Q, Bao L B, Zhao X H, et al.2016. Nicotinic acid supplementation in diet favored intramuscular fat deposition and lipid metabolism in finishing steers[J]. Experimental Biology and Medicine, 241(11): 1195-1201.