1 College of Pharmacy,Hunan University of Chinese Medicine, Changsha 410208, China; 2 Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Changsha 410128, China; 3 College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
Abstract:Hairy roots are a pathological phenomenon that occurs after plants are infected by Agrobacterium rhizogenes. It can produce the same or similar compounds as the original plant. Hairy root culture is an important method to produce plant secondary metabolites. In recent years, research on the strategy of using hairy roots to produce secondary metabolites has attracted more and more attention. This review mainly discusses hairy root culture conditions, expanded culture, and metabolic engineering. It introduces the research about plant secondary metabolism production based on the hairy root system, as well as the problems that need to be solved in the industrial production process. It is also explored that the future development direction of research on secondary metabolites produced by hairy roots. This article provides a reference for the hairy root production of secondary metabolites.
郑淇尹, 黄鹏, 曾建国. 毛状根生产次生代谢产物研究进展[J]. 农业生物技术学报, 2021, 29(5): 995-1006.
ZHENG Qi-Yin, HUANG Peng, ZENG Jian-Guo. Research Progress on the Production of Secondary Metabolites by Hairy Roots. 农业生物技术学报, 2021, 29(5): 995-1006.
[1] 包京姗, 张海弢, 徐大卫, 等. 2016. 王不留行毛状根培养体系建立及其黄酮苷的测定[J]. 中草药. 47(01), 138-142. (Bao J S, Zhang H T, Xu D W, et al.2016. Establishment of culture system of Vaccaria segetalis hairy roots and determination of vaccarin[J]. Chinese Traditional and Herbal Drugs. 47(01): 138-142. ) [2] 曹然, 张明生, 刘诗雅, 等. 2014. 不同理化因子对三分三毛状根生长及其莨菪碱含量的影响[J]. 农业生物技术学报, 2014, 22(02): 195-201. (Cao R, Zhang M S, Liu S Y, et al.2014. The influence of physical and chemical factors on the growth and hyoscyamine production in hairy root cultures of Anisodus Acutangulus[J]. Journal of Agricultural Biotechnology, 22(02): 195-201. ) [3] 付晓. 2015. 甜叶菊毛状根培养体系的建立及绿原酸类化合物的积累研究[D]. 硕士学位论文, 江西农业大学, 导师: 上官新晨, pp. 24-31. (Fu X.2015. Establishment of Stevia Rebaudiana hairy root cultures system and the studies of chlorogenic acids accumulation[D]. Thesis for M. S., Jiangxi Agricultural University. Supervisor: Shangguan X C, pp. 24-31.) [4] 郭双, 杨怡, 刘兴, 等. 2018. 酵母提取物对颠茄毛状根氮代谢及次生代谢影响的机制探究[J]. 中国中药杂志. 43(08), 1610-1617. (Guo S, Yang Y, Liu X, et al.2018. Mechanism exploration on nitrogen metabolism and secondary metabolism in Atropa belladonna hairy roots treaed with yeast extract[J]. China Journal of Chinese Materia Medica. 43(08), 1610-1617.) [5] 郭妍宏, 王飞艳, 尤华乾, 等. 2020. 不同碳源对丹参和藏丹参毛状根生长及活性成分积累的影响[J]. 中国中药杂志, 45(11): 2509-2514. (Guo Y F, Wang F Y, You H Q, et al.2020. Effects of different carbon sources on growth and active component contents in Salvia Miltiorrhiza and S. castanea f. tomentosa hairy roots[J]. China Journal of Chinese Materia Medicine, 45(11): 2509-2514.) [6] 何含杰, 黄小西, 张党权, 等. 2016. 细胞分裂素6-BA对三裂叶野葛毛状根生长和抗氧化酶活性的影响[J]. 北方园艺, (14): 156-159. (He H J, Huang X X, Zhang D Q, et al. 2016. Effect of 6-benzylaminopurine on growth and antioxidase activities in hairy root cultures of Pueraria phaseoloides[J]. Northern Horticulture, (14): 156-159.) [7] 侯嘉铭, 尹彦超, 田少凯, 等. 2021. 过表达CHI基因提高甘草毛状根中黄酮类化合物含量的研究[J]. 药学学报, 56(1): 319-327. (Hou J M, Yin Y M, Tian S K, et al.2021. Overexpressing of chalcone isomerase (CHI) gene enhances flavonoid accumulation in Glycyrrhiza urale[J]. Acta Pharmaceutica Sinica, 56(1): 319-327.) [8] 李翠芳, 王芳, 麻浩, 等. 2009. 培养基及温度对新疆紫草毛状根生长的影响[J]. 新疆农业科学, 46(05): 1117-1120. (Li C F, Wang F, Ma H, et al.2009. Effects of culture medium and temperature on growth of Arnebia Euchroma(royle)johnst hairy roots[J]. Xingjiang Agricultural Sciences, 2009, 46(05): 1117-1120.) [9] 李明. 2017. 通过大豆毛状根体系快速验证GmNAC08、GmNAC06和GmNAC15的基因功能[D].博士学位论文, 石河子大学, 导师: 齐军仓,pp.95-96. (Li M.2017. Rapid function validation of GmNAC08, GmNAC06 and GmNAC15 by soybean hairy root[D]. Thesis for Ph, D., Shihezi University, Supervisor: Qi J C, pp. 95-96.) [10] 刘佳, 卢克欢, 郭双, 等. 2018, 诱导子对颠茄毛状根生长及托品烷类生物碱质量分数的影响[J]. 西南大学学报(自然科学版), 2018, 40(05): 75-80. (Liu J, Lu K H, Guo S, et al.2018. Influences of elicitors on the growth and tropane alkaloid contents in the hairy roots of Atropa Belladonna L[J]. Journal of Southwest University (Natural Science Edition) , 2018, 40(05): 75-80.) [11] 刘军, 陈显化, 金朝霞, 等. 2013. 氮源和磷源对金铁锁毛状根悬浮培养的影响[J]. 大连工业大学学报, 32(06): 409-412. (Liu J, Chen X H, Jin C X, et al.2013. Effects of N and P sources on suspension culture of Psammosilene tunicoides hairy roots[J]. Journal of Dalian Polytechnic University, 2013, 32(06): 409-412.) [12] 刘彤, 杨淑慎, 方荣锋, 等. 2015. Ri质粒介导的毛状根体系建立及其在植物次生代谢产物合成中的研究进展[J]. 植物科学学报. 33(02), 264-270. (Liu T, Yang S S, Fang R F, et al.2015. Establishment of hairy root system m ediated by Ri plasmid and its advances in biosynthesis of plant secondary m etabolites[J]. Plant Science Journal. 33(02), 264-270.) [13] 欧少云, 施和平, 王云灵, 等. 2010. 南美蟛蜞菊毛状根的离体培养及其提取液对种子萌发的影响[J]. 应用与环境生物学报, 2010, 16(04): 534-540. (Ou S Y, Shi H P, Wang Y L, et al.2010. In vitro culture of Wedelia trilobata hairy roots and effect of their extract on seed germination[J]. Chinese Journal of Applied and Environmental Biology, 16(04): 534-540.) [14] 齐香君, 郭乐康, 陈微娜. 2009. 诱导子对黄芩毛状根生长及黄芩苷合成的影响[J]. 中草药. 40(05), 801-803. (Qi X J, Guo L K, Chen W N.2009. Influence of elicitors on growth and baicalin biosynthesis in hairy root of Scutellaria baicalensis[J]. Chinese Traditional and Herbal Drugs. 40(05), 801-803.) [15] 谈天斌, 卢晓玲, 张凯旋, 等. 2019. TrMYB308基因的克隆及在苦荞毛状根中的功能分析[J]. 植物遗传资源学报, 2019, 20(06): 1542-1553. (Tan T B, Lu X L, Zhang X, et al.2019. Cloning and functional analysis of transcription factor gene trmyb308 in Tartary Buckwheat hairy roots[J]. Journal of Plant Genetic Resources, 2019, 20(06): 1542-1553.) [16] 陶如, 冯蕾, 赵法兴, 等. 2015. 白花丹参毛状根诱导体系的建立与其内生真菌提高毛状根中丹酚酸含量的研究[J]. 时珍国医国药, 26(06), 1469-1473. (Tao R, Feng L, Zhao F X, et al.2015. Hairy root induction of Salvia miltiorrhiza Bge. f. alba and fungal endophytes enhanced salvianolic acid contents in hairy root cultures[J]. Lishizhen Medicine and Materia Medica Research. 26(06), 1469-1473.) [17] 滕中秋, 申业. 2015. 药用植物基因工程的研究进展[J]. 中国中药杂志, 2015, 40(04): 594-601. (Teng Z Q, Shen Y.2019. Research progress of genetic engineering on medicinal plants[J]. China Journal of Chinese Materia Medicine, 2015, 40(04): 594-601.) [18] 王飞艳, 尤华乾, 杜旭红, 等. 2020. 不同氮源对丹参和藏丹参毛状根有效成分积累的影响[J]. 中草药, 51(09): 2538-2547. (Wang F Y, You H Q, Du X H, et al.2020. Effects of different nitrogen sources on accumulation of active components in hairy roots of Salvia miltiorrhiza and Salvia castanea f. tomentosa[J]. Chinese Traditional and Herbal Drugs, 51(09): 2538-2547.) [19] 王莹, 王姝, 刘盈盈, 等. 2016. 生物技术在药用植物次生代谢产物方面的应用进展[J].现代园艺, (11):14-16. (Wang Y, Wang S, Liu Y Y, et al. 2016. Application progress of biotechnology in secondary metabolites of medicinal plants[J]. Xiandai Horticulture Horticulture, (11): 14-16. ) [20] 吴顺, 孙建春, 周凯, 等. 2019. 钩藤毛状根的诱导及其钩藤碱含量的测定[J]. 北方园艺, (15): 49-54. (Wu S, Sun J C, Zhou K, et al. 2019. Induction of hairy root of Uncaria rhynchophylla and content determination of rhynchophy lline[J]. Northern Horticulture, (15): 49-54.) [21] 徐悦, 曹英萍, 王玉, 等. 2019. 发根农杆菌介导的菠菜毛状根遗传转化体系的建立[J]. 植物学报, 54(04): 515-521. (Yue X, Yingping C, Yu W, et al.2019. Agrobacterium rhizogenes-mediated transformation system of Spinacia oleracea[J]. Chinese Bulletin of Botany, 2019, 54(4): 515-521.) [22] 杨睿, 付春祥, 金治平, 等. 2005. 不同理化因子对雪莲毛状根生长和总黄酮生物合成的影响[J]. 生物工程学报, 2005, 21(2) : 233-238. (Yang R, Fuc X, Jin Z P, et al.2005. Effects of physical and chemical factors on hairy root growth and flavonoids biosynthesis in the cultures of Saussurea medusa Maxim Hairy root[J]. Chinese Journal of Biotechnology, 2005, 21(2) : 233-238.) [23] 姚庆收, 陈向明, 丁斐, 等. 2018. 甘草毛状根遗传转化体系的建立及甘草酸和总黄酮含量的测定[J]. 中药材, 2018, 41(09): 2035-2038. (Yao Q S, Chen X M, Ding F, et al.2018. Establishment of genetic transformation system and determination of glycyrrhizic acid and total flavonoids in hairy roots of Glycyrrhiza uralensis[J]. Journal of Chinese Medicinal Materials, 2018, 41(09): 2035-2038.) [24] 余晓晖, 陈红刚, 赵磊, 等. 2015. 当归毛状根的诱导及其遗传稳定性研究[J]. 时珍国医国药, 26(07), 1757-1759. (Yu X H, Chen H G, Zhao L, et al.2015. Study on induction of Angellica sinensis hairy root and its genetic stability[J]. Lishizhen Medicine and Materia Medica Research, 26(07): 1757-1759.) [25] 张翠平, 李琳琳, 韦悦, 等. 2017. 3种常用培养基对颠茄毛状根生长与次生代谢产物积累的影响[J]. 西南大学学报(自然科学版), 39(06): 36-41. (Zhang C P, Li L L, Wei Y, et al.2017. Effects of three media on the growth and secondary metabolite conyents of Atropa belladonna L. hairy roots[J]. Journal of Southwest University (Natural Science Edition), 239(06): 36-41.) [26] 张洋, 洑香香, 尚旭岚. 2018. 药用植物生产体系构建——生物技术的应用[J]. 中药材, 41(01): 239-243. (Zhang Y, Fu X X, Shang X L.2018. Construction of the production system of medicinal plants-application of biotechnology[J]. Journal of Chinese Medicinal Materials, 2018, 41(01): 239-243.) [27] 戴均贵, 朱蔚华. 1999. 发根培养技术在植物次生代谢物生产中的应用[J].植物生理学通讯, (01): 69-76. (Dai J G, Zhu W H. 1990. Application of hairy-root culture technology to production of plant secondary metabolites[J]. Plant Physiology Journal, (01): 69-76.) [28] 邹凯. 2017. 甜叶菊毛状根优良根系筛选及扩大培养生产绿原酸类化合物[D]. 硕士学位论文, 江西农业大学, 导师: 上官新晨, pp. 29-41. (Zhou K.2017. Screening and scale-up culture of Stevia rebaudiana hairy roots to produce chlorogenic acids[D]. Thesis for M. S., Jiangxi Agricultural University, Supervisor: Shangguan X C, pp. 29-41.) [29] Akhgari A, Yrjonen T, Laakso I, et al.2015. Establishment of transgenic Rhazya stricta hairy roots to modulate terpenoid indole alkaloid production[J]. Plant Cell Reports, 2015, 34(11): 1939-1952. [30] Ashraf M F, Zain C R C M, Zainal Z, et al.2015. Establishment of Persicaria minor hairy roots and analysis of secreted β-caryophyllene in medium broth[J]. Plant Cell, Tissue and Organ Culture (PCTOC). 121(1): 11-20. [31] Balasubramanian M, Anbumegala M, Surendran R, et al.2018. Elite hairy roots of Raphanus sativus (L. ) as a source of antioxidants and flavonoids[J]. 3 Biotech. 8(2): 1-15. [32] Boobalan S, Kamalanathan D.2020. Tailoring enhanced production of aervine in Aerva lanata (L. ) Juss. Ex Schult by Agrobacterium rhizogenes - mediated hairy root cultures[ J]. Industrial Crops & Products. 155: 112814. [33] Butler N, Jansky S H, Jian J.2020. First-generation genome editing in potato using hairy root transformation[J]. Plant Biotechnology Journal. 18(11): 2201-2209. [34] Cardon F, Pallisse R, Bardor M, et al.2019. Brassica rapa hairy root based expression system leads to the production of highly homogenous and reproducible profiles of recombinant human alpha-L-iduronidase[J]. Plant Biotechnol Journal. 17(2): 505-516. [35] Chahardoli M, Fazeli A, Ghabooli M.2018. Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system[J]. Plant Physiol Biochem. 123: 414-421. [36] Chandr S, Chandra R.2011. Engineering secondary metabolite production in hairy roots[J]. Phytochemistry Reviews. 10(3): 371-395. [37] Chung I, Rekha K, Rajakumar G, et al.2018. Production of bioactive compounds and gene expression alterations in hairy root cultures of chinese cabbage elicited by copper oxide nanoparticles[J]. Plant Cell Tissue and Organ Culture, 134(1): 95-106. [38] Dai Y, Hu G, Dupas A, et al.2020. Implementing the CRISPR/Cas9 technology in Eucalyptus hairy roots using wood-related genes[J]. International Journal of Molecular Sciences. 21(10) : 3408. [39] Ebrahimi M A.2017. Agrobacterium Rhizogenes-mediated transformation of Peganum multisectum (Maxim) bobrov and harmine production in hairy roots[J]. Journal of Medicinal Plants and By-products. 6(2) : 201-212. [40] Ewa S, Agnieszka K, Monika A O, et al.2015. Establishment of hairy root cultures of Rhaponticum carthamoides (Willd. ) Iljin for the production of biomass and caffeic acid derivatives[J]. BioMed research international. 2015: 181098. [41] Fabricio M, Cramer C.2004. Production of recombinant proteins by hairy roots cultured in plastic sleeve bioreactors[J]. Methods in Molecular BiologyMethods, 267: 351-363. [42] Fu J Y, Zhao H, Bao J X, et al.2020. Establishment of the hairy root culture of Echium plantagineum L. and its shikonin production[J]. 3 Biotech. 10(10): 1-10. [43] Fu X, Yin Z, Chen J, et al.2015. Production of chlorogenic acid and its derivatives in hairy root cultures of Stevia rebaudiana[J]. Journal of Agricultural and Food Chemistry, 63(1): 262-268. [44] Gabr A M M, Sytar O, Ghareeb H, et al.2019. Accumulation of amino acids and flavonoids in hairy root cultures of common buckwheat (Fagopyrum esculentum)[J]. Physiology and Molecular Biology of Plants, 25(3): 787-797. 25(3). [45] Gai Q Y, Jiao J, Luo M, et al.2015. Establishment of hairy root cultures by Agrobacterium rhizogenes mediated transformation of Isatis tinctoria L. for the efficient production of flavonoids and evaluation of antioxidant activities[J]. PLOS ONE. 10(3): e0119022. [46] Goswami M, Akhtar S, Osama K.2018. Strategies for monitoring and modeling the growth of hairy root cultures: An in silico perspective: An effective tool of plant biotechnology[M]. //Hairy Roots. Springer, Singapore, 311-327. [47] Guillon S, Trémouillaux-Guiller J, Pati PK, et al.2006. Hairy root research: Recent scenario and exciting prospects[J]. Current Opinion in Plant Biology, 9: 341-346. [48] Grzegorczyk I, Królicka A, Wysokińska H.2015. Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid[J]. Zeitschrift für Naturforschung C, 67(3): 389-395. [49] Hernández-Altamirano J M, Ugidos I F, Palazón J, et al.2020. Production of encecalin in cell cultures and hairy roots of Helianthella quinquenervis (Hook.) A. Gray[J]. Molecules, 25(14): 3231. [50] Huang P, Xia L, Liu W, et al.2018. Hairy root induction and benzylisoquinoline alkaloid production in Macleaya cordata[J]. Scientific Reports, 8(1): 11986-11994. [51] Iaffaldano B, Zhang Y, Cornish K.2016. CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection[J]. Industrial Crops & Products, 89: 356-362. [52] Jiao J, Gai Q Y, Fu Y J, et al.2014. Efficient production of isoflavonoids by Astragalus membranaceus hairy root cultures and evaluation of antioxidant activities of extracts[J]. Journal of Agricultural and Food Chemistry, 62(52): 12649-12658. [53] Jiao J, Gai Q Y, Wang W, et al.2015. Ultraviolet radiation-elicited enhancement of isoflavonoid accumulation, biosynthetic gene expression, and antioxidant activity in Astragalus membranaceus hairy root cultures[J]. Journal of Agricultural and Food Chemistry, 63(37): 8216-8224. [54] Joseph S J, Udayakumar R, Arun M, et al.2020. Effect of different Agrobacterium rhizogenes strains for in-vitro hairy root induction, total phenolic, flavonoids contents, antibacterial and antioxidant activity of (Cucumis anguria L.)[J]. Saudi Journal of Biological Sciences, 27(11): 2972-2979. [55] Kai G Y, Xu H, Zhou C, et al.2011. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures[J]. Metabolic Engineering, 13(3): 319-327. [56] Kai G Y, Zhang A, Guo Y Y, et al.2012. Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6β-hydroxylase[J]. Molecular bioSystems, 8(11): 2883-2890. [57] Khan S A, Verma P, Banerjee S, et al.2017. Pyrethrin accumulation in elicited hairy root cultures of Chrysanthemum cinerariaefolium[J]. Plant Growth Regulation, 81(3): 365-376. [58] Kim Y B, Reed D W, Covello P S.2015. Production of triterpenoid sapogenins in hairy root cultures of Silene vulgaris[J]. Natural Product Communications, 10(11): 1919-1922. [59] Kim Y, Kim J K, Kim Y B, et al.2013. Enhanced accumulation of phytosterol and triterpene in hairy root cultures of Platycodon grandiflorum by overexpression of Panax ginseng 3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. Journal of agricultural and food chemistry, 61(8): 1928-1934. [60] Kochan E, Balcerczak E, Lipert A, et al.2018. Methyl jasmonate as a control factor of the synthase squalene gene promoter and ginsenoside production in American ginseng hairy root cultured in shake flasks and a nutrient sprinkle bioreactor[J]. Industrial Crops and Products, 115: 182-193. [61] Kundu S, Salma U, Ali M N, et al.2018. Development of transgenic hairy roots and augmentation of secondary metabolites by precursor feeding in Sphagneticola calendulacea (L.) Pruski[J]. Industrial Crops and Products, 121: 206-215. [62] Lan X Z, Quan H, Xia X L, et al.2015. Establishment of hairy root cultures and analysis of rotenoid in Tibetan medicinal plant Mirabilis himalaica[J]. Plant Omics, 8(4): 335-339. [63] Li X, Thwe A A, Park C H, et al.2017. Ethephon-induced phenylpropanoid accumulation and related gene expression in tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) hairy root[J]. Biotechnology & Biotechnological Equipment, 31(2) : 304-311. [64] Lu Q Y, Cao Y C, Chen Y M, et al.2017. Application progress of hairy roots for phytoremediation[J]. Bioprocess, 07: 19-30. [65] Małgorzata K, Barbara T, Elwira S, et al.2014. The effect of nutritional factors and plant growth regulators on micropropagation and production of phenolic acids and saponins from plantlets and adventitious root cultures of Eryngium maritimum L.[J]. Journal of Plant Growth Regulation, 33(4): 809-819. [66] María P, Alejandra B C, María L M, et al.2017. Enhancement of anthraquinone production and release by combination of culture medium selection and methyl jasmonate elicitation in hairy root cultures of Rubia tinctorum[J]. Industrial Crops & Products, 105: 124-132. [67] Marta W, Alekandra O, Anna K K, et al.2020. Establishment of hairy root cultures of Salvia bulleyana Diels for production of polyphenolic compounds[J]. Journal of Biotechnology.(prepublish). 318: 10-19. [68] Mehrotra S, Srivastava V, Rahman U L, et al.2015. Hairy root biotechnology--indicative timeline to understand missing links and future outlook[J]. Protoplasma, 252(5): 1189-1201. [69] Meteier E, Camera S L, Mary-Lorène G, et al.2019. Overexpression of the VvSWEET4 transporter in grapevine hairy roots increases sugar transport and contents and enhances resistance to pythium irregulare, a soilborne pathogen[J]. Frontiers in Plant Science, 10: 884. [70] Mishra B N, Ranjan R.2008. Growth of hairy‐root cultures in various bioreactors for the production of secondary metabolites[J]. Biotechnology and Applied Biochemistry, 2008, 49(1): 1-10. [71] Moharrami F, Hosseini B B, Sharafi A, et al.2017. Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles[J]. In Vitro Cellular & Developmental Biology -Plant, 53(2): 104-111. [72] Murthy H N, Georgiev M I, Kim Y, et al.2014. Ginsenosides: Prospective for sustainable biotechnological production[J]. Applied Microbiology and Biotechnology, 98(14): 6243-6254. [73] Oliver T, Branka V, Dijana K, et al.2017. Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L[J]. Plant Cell, Tissue and Organ Culture, 128(3): 589-605. [74] Peebles C A, Sander G W, Hughes E H, et al.2011. The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots[J]. Metabolic engineering, 13(2): 234-240. [75] Pham N B, Schäfer H, Wink M.2012. Production and secretion of recombinant thaumatin in tobacco hairy root cultures[J]. Biotechnology Journal, 7(4): 537-545. [76] Pooja S, Sana K, Shiv S P, et al.2015. Vanillin production in metabolically engineered Beta vulgaris hairy roots through heterologous expression of Pseudomonas fluorescens HCHL gene[J]. Industrial Crops & Products, 74: 839-848. [77] Riker A J, Banfield W M, Wright W H.1930. Studies on infectious hairy root of nursery apple trees[J]. Journal of Agricultural Research, 1930, 41: 507-540. [78] Ruby G, Pallavi P, Sailendra S, et al.2016. Advances in Boerhaavia diffusa hairy root technology: A valuable pursuit for identifying strain sensitivity and up-scaling factors to refine metabolite yield and bioactivity potentials[J]. Protoplasma, 253(4): 1145-1158. [79] Sarkar J, Misra A, Banerjee N.2020. Genetic transfection, hairy root induction and solasodine accumulation in elicited hairy root clone of Solanum erianthum D. Don[J]. Journal of Biotechnology. 323: 238-245. [80] Shinde A N, Malpathak N, Fulzele D P.2009. Enhanced production of phytoestrogenic isoflavones from hairy root cultures of Psoralea corylifolia L. using elicitation and precursor feeding[J]. Biotechnology and bioprocess engineering, 14(3): 307-315. [81] Shu H, Luo Z, Peng Z, et al.2020. The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation[J]. BMC plant biology, 20(1) , Article number: 417. [82] Singh H, Dixit S, Verma P C, et al.2014. Evaluation of total phenolic compounds and insecticidal and antioxidant activities of tomato hairy root extract[J]. Journal of Agricultural and Food Chemistry, 62(12): 2588-2594. [83] Subramanian S.2017. Hairy root composite plant systems in root-microbe interaction research[J]. Production of Plant Derived Natural Compounds through Hairy Root Culture, 17-45. [84] Tabar R S, Moieni A, Monfared S R, et al.2019. Improving biomass and chicoric acid content in hairy roots of Echinacea purpurea L.[J]. Biologia, 74(8): 941-951. [85] Thakore D, Srivastava A K, Sinha A K, et al.2017. Mass production of ajmalicine by bioreactor cultivation of hairy roots of Catharanthus roseus[J]. Biochemical Engineering Journal, 84-91. [86] Wang Y Y, Yang B R, Zhang M X, et al.2019. Application of transport engineering to promote catharanthine production in Catharanthus roseus hairy roots[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 139(3): 523-530. [87] Wei T, Gao Y, Deng K, et al.2019. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root cultures by metabolic engineering[J]. Plant Methods, 15(1): 53-63. [88] White F F, Nester E W.1980. Hair root: Plasmid encodes virulence traits in Agrobacterium rhizogenes[J]. Journal of bacteriology, 141(3): 1134-1141. [89] Wongsamuth R, Doran PM.1997. Production of monoclonal antibodies by tobacco hairy roots[J]. Biotechnology and Bioengineering, 54(5): 401-415. [90] Woods R R, Geyer B C, Mor T S.2008. Hairy-root organ cultures for the production of human acetylcholinesterase[J]. BMC Biotechnology, 8(3): 298-308. [91] Yang T, Fang L, Nopoolazabal C, et al.2015. Enhanced production of resveratrol, piceatannol, arachidin-1, and arachidin-3 in hairy root cultures of peanut co-treated with methyl jasmonate and cyclodextrin[J]. Journal of Agricultural and Food Chemistry, 63(15): 3942-3950. [92] Yao S, Bai L, Lan Z, et al.2016. Hairy root induction and polysaccharide production of medicinal plant Callerya speciosa Champ[J]. Plant Cell Tissue and Organ Culture, 126(1): 177-186. [93] Yeon K D, Bok K Y, Kwang K J, et al.2020. Production of rosmarinic acid and correlated gene expression in hairy root cultures of green and purple basil (Ocimum basilicum L.)[J]. Preparative Biochemistry & Biotechnology, 20: 1-9. [94] Yu K W, Murthy H N, Hahn E J, et al.2005. Ginsenoside production by hairy root cultures of Panax ginseng: Influence of temperature and light quality[J]. Biochemical Engineering Journal, 23(1): 53-56. [95] Zaheer M, Reddy V D, Giri C C, et al.2016. Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae)[J]. Natural Product Research, 30(13): 1542-1547. [96] Zhang R, Zhang B, Li G, et al.2015. Enhancement of ginsenoside Rg1 in Panax ginseng hairy root by overexpressing the α-L-rhamnosidase gene from Bifidobacterium breve[J]. Biotechnology Letters, 37(10): 2091-2096. [97] Zhou Z, Tan H, Li Q, et al.2018. CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza[J]. Phytochemistry. 148: 63-70.