Analysis of International Development Trend of Soil Microbial Community Research Based on Bibliometrics
MA Ning1, SHEN Qi-Rong1, ZHANG Chao1, LI Xiang2, LIU Yan-Xia2, YANG Xing-Ming1,*
1 College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2 Guizhou Tobacco Research Institute, Guiyang 550000, China
Abstract:Soil microbial community is an important part of ecosystem, which plays an irreplaceable role in regulating plant growth, promoting the formation of soil structure and maintaining the function and stability of ecosystem. In this study, using CiteSpace document visualization software, data mining was conducted on 6 909 articles about soil microbial community collected from the Web of Science core database from 1990 to 2020. The results showed a steady increase in the number of publications in the soil microbial community area, a higher number of publications in China and the United States, and a greater number of cooperative communications between China and the United States, and a higher number of publications in the field of soil microbial community in the Chinese Academy of Sciences (CAS). Despite its late launch, CAS occupied a very important position. Based on deep excavation of highly cited literature in this field and the cross-citation analysis, it was speculated that the future research directions include dynamic microbial community, soil, soil ecosystem characteristics and many kinds of unculturable bacteria. Finally, using co-occurrence network and emergent detection, it was found that current research focuses on "functional diversity", "litter decomposition" and "microbial diversity". This study will be helpful to the development, layout and innovation of soil microbial community research.
马宁, 沈其荣, 张超, 李想, 刘艳霞, 杨兴明. 基于文献计量的土壤微生物群落研究国际发展态势[J]. 农业生物技术学报, 2021, 29(4): 813-824.
MA Ning, SHEN Qi-Rong, ZHANG Chao, LI Xiang, LIU Yan-Xia, YANG Xing-Ming. Analysis of International Development Trend of Soil Microbial Community Research Based on Bibliometrics. 农业生物技术学报, 2021, 29(4): 813-824.
[1] 陈悦, 陈超美, 刘则渊, 等. 2015. CiteSpac知识图谱的方法论功能[J]. 科学学研究, 33(2): 242-253. (Chen Y, Chen C M, Liu Z Y, et al.2015. The methodology function of Cite Space mapping knowledge domains[J]. Studies in Science of Science, 33(2): 242-253.) [2] 陈悦. 2014. 引文空间分析原理与应用[M]. 北京: 科学出版社, pp. 15-35. (Chen Yue.2014. Principlesand applications of analyzing a citation space[M]. Beijing: Science Press, pp. 15-35.) [3] 胡泽文, 孙建军, 武夷山. 2013. 国内知识图谱应用研究综述[J]. 图书情报工作, 57(03): 131-137+84. (Hu Z W, Sun J J, Wu Y S.2013. Research review on application of knowledge mapping in China[J]. Library and Information Service, 57(3): 131-137+84.) [4] 李杰, 陈超美. 2016. CiteSpace: 科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社. (Li J, Chen C M.2016. CiteSpace: text mining and visualization in scientific literature[M]. Beijing: Capital University of Economics & Business Press.) [5] 沈仁芳, 赵学强. 2015. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 35(20): 6584-6591. (Shen R F, Zhao X Q.2015. Role of soil microbes in the acquisition of nutrients by plants[J]. Acta Ecologica Sinica, 35(20): 6584-6591.) [6] 宋秀芳, 迟培娟. 2016. Vosviewer与Citespace应用比较研究[J]. 情报科学, 34(07): 108-112, 146. (Song X F, Chi P J.2016. Comparative study of the data analysis results by Vosviewer and Citespace[J]. Information Scicnce, 34(07): 108-112, 146.) [7] 孙波, 王晓玥, 吕新华. 2017. 我国60年来土壤养分循环微生物机制的研究历程——基于文献计量学和大数据可视化分析[J]. 植物营养与肥料学报, 23(06): 1590-1601. (Sun B, Wang X, Lu X.2017. The historical venation in research on microbial mechanismsof soil nutrient cycling in the past 60 years—Based on bibliometric analysis and big data visualization[J]. Journal of Plant Nutrition and Fertilizer, 23(06): 1590-1601.) [8] 唐浩竣, 李海萍, 陈文悦, 等. 2019. 基于科学知识图谱谈土壤有机碳研究进展[J]. 土壤学报, 56(3): 541-552. (Tang H J, Li H P, Chen W Y, et al.2019. Research progress on soil organic carbon based on map of scientific knowledge[J]. Acta Pedologic a Sonica, 56(3): 541-552.) [9] 郑华, 陈法霖, 欧阳志云, 等. 2007.不同森林土壤微生物群落对Biolog-GN板碳源的利用[J]. 环境科学, 28(5):1126-1130. (Zheng H, Chen F L, Ouyang Z Y, et al.2007. Utilization of different carbon sources types in biolog-GN microplates by soil microbial communities from four forest types[J]. Huan Jing Ke Xue, 28(5): 1126-1130.) [10] Alvarez C R, Alvarez R.2000. Short-term effects of tillage systems on active soil microbial biomass[J]. Biology and Fertility of Soils, 31(2): 157-161. [11] Bakker M G, Chaparro J M, Manter D K, et al.2015. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays[J]. Plant&Soil, 392(1/2): 115-126. [12] Bardgett R D, Lovell R D, Hobbs P J, et al.1999. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands[J]. Soil Biology & Biochemistry, 31(7): 1021-1030. [13] Caporaso J G, Kuczynski J, Stombaugh J, et al.2010. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 7(5): 335-336. [14] Chen C M.2004. Searching for intellectual turning points: Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences of the USA, 101: 5303-5310. [15] Chen C M.2006. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 57(3): 359-377. [16] Cui H, Wang C H, Gu Z H, et al.2014. Evaluation of soil storage methods for soil microbial community using genetic and metabolic fingerprintings[J]. European Journal of Soil Biology, 63(55-63. [17] Edgar R C.2010. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 26(19): 2460-2461. [18] Edgar R C.2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-+. [19] Edgar R C, Haas B J, Clemente J C, et al.2011. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 27(16): 2194-2200. [20] Fierer N, Jackson R B.2006. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the USA, 103(3): 626-631. [21] Fierer N, Lauber C L, Ramirez K S, et al.2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. Isme Journal, 6(5): 1007-1017. [22] Freeman L C.1977. A Set of Measures of Centrality Based on Betweenness[J]. Sociometry, 40(1): 35-41. [23] Frostegard A, Tunlid A, Baath E.2011. Use and misuse of PLFA measurements in soils[J]. Soil Biology & Biochemistry, 43(8): 1621-1625. [24] Garcia-Orenes F, Morugan-Coronado A, Zornoza R, et al.2016. Correction: Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean Agro-ecosystem[J]. Plos One, 11(3): e0152958. [25] Harris J.2009. Soil Microbial communities and restoration ecology: Facilitators or followers?[J]. Science, 325(5940): 573-574. [26] Hill G T, Mitkowski N A, Aldrich-Wolfe L, et al.2000. Methods for assessing the composition and diversity of soil microbial communities[J]. Applied Soil Ecology, 15(1): 25-36. [27] Huang M, Jiang L G, Zou Y B, et al.2013. Changes in soil microbial properties with no-tillage in Chinese cropping systems[J]. Biology and Fertility of Soils, 49(4): 373-377. [28] Ji H B, Zhang Y, Bararunyeretse P, et al.2018. Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain[J]. Ecotoxicology and Environmental Safety,(165)182-193. [29] Juliet P M, Boddy L, Peter F. R.2002. Analysis of microbial community functional diversity using sole‐carbon‐source utilisation profiles - a critique[J]. FEMS Microbiology Ecology, 42(1). : 1-14. [30] Kaisermann A, Roguet A, Nunan N, et al.2013. Agricultural management affects the response of soil bacterial community structure and respiration to water-stress[J]. Soil Biology & Biochemistry, 66(69-77). [31] Kuffner M, Hai B, Rattei T, et al.2012. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing[J]. FEMS Microbiology Ecology, 82(3): 551-562. [32] Lauber C L, Hamady M, Knight R, et al.2009. Pyrosequencing-based assessment of soil ph as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 75(15): 5111-5120. [33] Li J M, Jin Z X, Hagedorn F, et al.2014. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities[J]. Scientific Reports, 4(1): 6895. [34] Ma S Y, De Frenne P, Vanhellemont M, et al.2019. Local soil characteristics determine the microbial communities under forest understorey plants along a latitudinal gradient[J]. Basic and Applied Ecology, 36: 34-44. [35] Mitchell R J, Campbell C D, Chapman S J, et al.2010. The ecological engineering impact of a single tree species on the soil microbial community[J]. Journal of Ecology, 98(1): 50-61. [36] Moore J, Macalady J L, Schulz M S, et al.2010. Shifting microbial community structure across a marine terrace grassland chronosequence, Santa Cruz, California[J]. Soil Biology & Biochemistry, 42(1): 21-31. [37] Morriss A, Meyer K, Bohannan B.2020. Linking microbial communities to ecosystem functions: what we can learn from genotype-phenotype mapping in organisms[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 375: 1798. [38] Ng E L, Patti A F, Rose M T, et al.2014. Does the chemical nature of soil carbon drive the structure and functioning of soil microbial communities?[J]. Soil Biology & Biochemistry, 70: 54-61. [39] Rousk J, Baath E, Brookes P C, et al.2010. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. Isme Journal, 4(10): 1340-1351. [40] Schindlbacher A, Rodler A, Kuffner M, et al.2011. Experimental warming effects on the microbial community of a temperate mountain forest soil[J]. Soil Biology & Biochemistry, 43(7): 1417-1425. [41] Schloss P D, Westcott S L, Ryabin T, et al.2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 75(23): 7537-7541. [42] Shiffrin R M, Brner K.2004. Mapping knowledge domains[J]. Proceedings of the National Academy of Sciences, 101 Suppl 1(Supplement 1): 5183-5185. [43] Singh B K, Munro S, Potts J M, et al.2007. Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils[J]. Applied Soil Ecology, 36(2-3): 147-155. [44] Smit E, Leeflang P, Wernars K.1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis[J]. FEMS Microbiology Ecology, 23(3): 249-261. [45] Thoms C, Gattinger A, Jacob M, et al.2010. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest[J]. Soil Biology & Biochemistry, 42(9): 1558-1565. [46] Van der Heijden M G A, Bardgett R D, van Straalen N M.2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 11(3): 296-310. [47] Wang B Z, Zhang C X, Liu J L, et al.2012. Microbial community changes along a land-use gradient of desert soil origin[J]. Pedosphere, 22(5): 593-603. [48] Wang Q, Li X N, Yang Q X, et al.2019. Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria[J]. Ecotoxicology and Environmental Safety, 171:746-752. [49] Wilding L P, Lin H.2006. Advancing the frontiers of soil science towards a geoscience[J]. Geoderma, 131(3): 257-274. [50] Wu C, Shi L Z, Xue S G, et al.2019. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils[J]. Science of the Total Environment, 647: 1158-1168. [51] Wu Y C, Wu H J, Fu H Y, et al.2020. Burial depth of anode affected the bacterial community structure of sediment microbial fuel cells[J]. Environmental Engineering Research, 25(6): 871-877. [52] Yanarda I H, Zornoza R, Bastida F, et al.2017. Native soil organic matter conditions the response of microbial communities to organic inputs with different stability[J]. Geoderma, 295: 1-9. [53] Zelles L.1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review[J]. Biology and Fertility of Soils, 29(2): 111-129. [54] Zhalnina K, Louie K B, Hao Z, et al.2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 3(4): 470-480. [55] Zhang G G, Liu X W, Gao M L, et al.2020. Effect of Fe-Mn-Ce modified biochar composite on microbial diversity and properties of arsenic-contaminated paddy soils[J]. Chemosphere, 250(6):126249. [56] Zhou Y, Clark M, Su J Q, et al.2015. Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient[J]. Plant and Soil, 386(1-2): 171-183.