Analysis of the Fertility Sensitivity to Photoperiods and Temperatures of Duration of Cultivation of CMS-WA in Rice (Oryza sativa)
LIN Qiang1,2, LUO Xi1,2, XIE Hong-Guang1,2, HE Wei1,2, WANG Ying-Heng1,2, CAI Qiu-Hua1,2, ZHANG Jian-Fu1,2,*
1 Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; 2 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Academy of Agricultural Sciences /Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs /Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/ Fujian Key Laboratory of Rice Molecular Breeding/Incubator of National key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences & Technology, China/South China Bases of National Key Laboratory of Hybrid Rice for China/National Rice Engineering Laboratory of China, Fuzhou 350003, China;
摘要水稻(Oryza sativa)细胞质雄性不育(cytoplamic male sterility, CMS)系花粉育性不同程度的波动,直接影响杂交稻种子纯度。为了研究水稻野败型细胞质雄性不育(cytoplamic male sterility of wild abortion, CMS-WA)系育性的光温敏感性,本研究设置4个播栽期,4个不同光照长度处理,选择3个微效恢复基因数量不同的野败型(wild abortion type, WA)不育系'珍汕97A'、'龙特浦A'和'京福1A',以嵌合颖花率(rate of florets with fertile anthers)和黑染花粉率(dark pollen rate by I2-IK dyed)为育性指标,应用回归模型分析播栽期温度及光照长度对不育系花粉育性的影响。结果表明,光温互作对不育系中微效恢复基因的表达有重要的影响,随着播栽温度的上升,3个不育系的黑染花粉率和嵌合颖花率总体上均表现上升趋势,'珍汕97A'、'京福1A'的花粉育性对光照长度没有明显的反应,而光照长度对'龙特浦A'的效应达显著水平(P<0.05)。'龙特浦A'可归类为温光并进型,光照长度作用随播栽期温度同时发生互促效应,温光并进型不育系采取早繁早制的措施,种子纯度高;而在选育和提纯上,应在高播栽期温度短日照的条件下进行,及早剔除不合格单株或株系。'珍汕97A'和'京福1A'可归类为温度敏感型,光照长度效应不明显,因而低播栽期温度下繁殖和制种,高播栽期温度下选育和提纯,效果较好。本实验结果对不育系原种提纯、选育改良及繁殖制种具有指导和参考作用。
Abstract:The various degrees sterility fluctuation of CMS (cytoplasmic male sterility) lines directly affects the seeds purity of hybrid rice (Oryza sativa). For analyzing the fertility sensitivity by photoperiods and temperatures of duration of cultivation to CMS-WA (cytoplamic male sterility of wild abortion), 4 temperatures of duration of cultivation and 4 photoperiods were selected to study male fertility changes of 3 CMS-WA lines ('Zhenshan 97A', 'Longtepu A' and 'Jinfu 1A') which had different numbers of minor effect restoring gene. The dark pollen rate by I2-IK (mixed solution of I2 and IK) dyed and rate of florets with fertile anthers were analyzed by linear regression model. For constructing predictive analysis models, and exploring the genetic basis of dark pollen rate by I2-IK dyed and rate of florets with fertile anthers caused by the interaction between temperatures of duration of cultivation and photoperiods and restoring gene with minor effect. The results showed that dark pollen rate by I2-IK dyed and rate of florets with fertile anthers of male sterile lines were importantly affected by the interaction between photoperiods and temperatures of duration of cultivation. Generally, with temperature rising, dark pollen rate by I2-IK dyed and rate of florets with fertile anthers of CMS lines were increasing. With photoperiod increasing, significant impact was observed in 'Longtepu A', but not in 'Jingfu 1A' and 'Zhenshan 97A'. So, 'Longtepu A' should be classified as photo-thermo-sensitive type, it meant that 'Longtepu A' had mutual promotion effect by photoperiods and temperatures of duration of cultivation, and early season propagation and early season production were priority adopted to ensure the purity of seeds. Breeding and purification of photo-thermo-sensitive type CMS lines, should be conducted at short photoperiods and high temperature of duration of cultivation. Thereby the unqualified individual plant or lines could be eliminated as soon as possible. 'Zhenshan 97A' and 'Jingfu 1A' belonged to thermo-sensitive type, and had no obvious photoperiod effect. Low temperature of duration of cultivation was large contribution to propagation and production seed, and high temperature was beneficial to breeding and purification of thermo-sensitive type CMS lines. The result could provide reference basis for breeding, purification, propagation and reproduction of male sterile lines.
林强, 罗曦, 谢鸿光, 何炜, 王颖姮, 蔡秋华, 张建福. 水稻CMS-WA育性的光温敏感性分析[J]. 农业生物技术学报, 2020, 28(1): 22-31.
LIN Qiang, LUO Xi, XIE Hong-Guang, HE Wei, WANG Ying-Heng, CAI Qiu-Hua, ZHANG Jian-Fu. Analysis of the Fertility Sensitivity to Photoperiods and Temperatures of Duration of Cultivation of CMS-WA in Rice (Oryza sativa). 农业生物技术学报, 2020, 28(1): 22-31.
[1] 富昊伟, 李友发, 马兴华, 等. 2010. "三系"不育系微效恢复基因表现型研究[J]. 作物研究, 24(1): 8-11. (Fu H W, Li Y F, Ma X H, et al.2010. Study on phenotype of restoring gene with minor effect in three-line sterile lines in rice (Oryza sativa L.)[J]. Crop Research, 24(1): 8-11.) [2] 高恒广, 何顺椹, 杨立彬, 等. 1993. 三系不育系龙特浦A具有光温敏特性[J]. 杂交水稻, (1): 44-45. (Gao H G, He S S, Yang L B, et al.1993. Long-Te-Pu A (a "three-line" sterile line) is characterized by its sensitivity to photoperiod and temperature[J]. Hybrid Rice, (1): 44-45.) [3] 高明亮, 冯建成, 王雪珍, 等. 2001. 龙特浦A的利用及其改良研究[J]. 杂交水稻, 16(2): 5-6. (Gao M L, Feng J C, Wang X Z, et al.2001. Utilization of Longtepu A and its improvement[J]. 16(2): 5-6.) [4] 顾华琴, 向志攀, 刘赛, 等. 2017. 水稻三系不育系育性与温度关系研究[J]. 生命科学研究, 21(2): 144-148, 173. (Gu H Q, Xiang Z P, Liu S, et al. 2017. Association between temperature and fertility of CMS lines in rice, 21(2): 144-148, 173.) [5] 郭建夫, 魏荷, 王丰青, 等. 2007. 龙特浦A在湛江的育性稳定性研究[J]. 安徽农业科学, 35(9): 2540-2542, 2559. (Guo J F, Wei H, Wang F Q, et al. 2007. Study on the fertility stability of rice-Longtepu A in Zhangjiang[J]. Journal of Anhui Agricultural Sciences, 35(9): 2540-2542, 2559.) [6] 黄荣华. 1997. 环境因素对籼稻不育系龙特甫A育性稳定性的影响[J]. 福建稻麦科技, 15(4): 13-18. (Huang L H.1997. Effect of different environmental factors on male-fertility stability of Longtepu A CMS lines[J]. Fujian Science and Technology of Rice and Wheat, 15(4): 13-18.) [7] 雷捷成, 游年顺, 郑秀平. 1984. 野败型水稻雄性不育系保持系选育的遗传分析[J]. 中国农业科学, (5): 30-34. (Lei J C, You N S, Zheng X P. 1984. Genetic analysis for breeding maintainer line of male sterility of wild rice with abortive pollen[J]. Scientia Agricultura Sinica, (5): 30-34.) [8] 林强, 郑燕梅, 张建福, 等. 2013. 水稻CMS-WA微效恢复基因的遗传分析[J]. 福建农业学报, 28(9): 872-875. (Lin Q, Zheng Y M, Zhang J F, et al.2013. Genetic analysis for phenotype of restoring gene with minor effect in CMS-WA in rice (Oryza sativa L.)[J]. Fujian Journal of Agricultural Sciences, 28(9): 872-875.) [9] 林振山. 1999. 大气(气候)系统可预报性问题的讨论[J]. 地球物理学报, 42(增刊): 13-16. (Lin Z S.1999. The discuss of the predictability of climatic or atmospheric system[J]. Chinese Journal of Geophysics, 42(Suppl.): 13-16.) [10] 苗果园, 王士英, 张云亭, 等. 1994. 温光互作对小麦品种发育效应的研究Ⅱ. 温光对品种苗穗期作用力与回归分析[J]. 作物学报, 20(2): 136-143. (Miao G Y, Wang S Y, Zhang Y T, et al.1994. Studies on the combined effects of temperature and light on the development of wheat cultivars Ⅱ. Regression analysis of the effectiveness of temperature and light on the seedling-heading periods[J]. Acta Agronomica Sinica, 20(2): 136-143.) [11] 潘润森, 张功宙, 张轼, 等. 1994. 光周期和温度对水稻雄性不育系龙特浦A育性恢复的影响[J]. 福建农业大学学报(自然科学版), 23(3): 257-261. (Pan R S, Zhang G Z, Zhang S, et al.1994. Effect of photoperiod and temperature on pollen fertility restoration of cytoplasmic male sterile rice-Longtepu A[J]. Journal of Fujian Agricultural University (Natural Sciences Edition), 23(3): 257-261.) [12] 时少英, 刘式达, 付遵涛, 等. 2005. 天气和气候的时间序列特征分析[J]. 地球物理学报, 48(2): 259-264. (Shi S Y, Liu S D, Fu Z T, et al.2005. The characteristic analysis of weather and climate time series[J]. Chinese Journal of Geophysics (in Chinese), 48(2): 259-264.) [13] 陶华, 薛庆中. 2005. 应用基因型与播期互作效应分析水稻光温敏核不育系对光周期和温度的育性敏感性[J]. 作物学报, 31(2): 1586-1592. (Tao H, Xue Q Z.2005. AMMI analysis of genotype by sowing date interaction reveals the fertility sensitivity to photoperiod and temperature of P(T)GMS rice[J]. Acta Agronomica Sinica, 31(2): 1586-1592.) [14] 席建民, 张雄飞, 唐亚林, 等. 2011. 籼型三系不育系育性与温、光的关系初探[J]. 杂交水稻, 26(1): 72-75. (Xi J M, Zhang X F, Tang Y L, et al.2011. A preliminary study on relation of fertility to temperature and photoperiod in indica CMS lines of rice[J]. Hybrid Rice, 26(1): 72-75.) [15] 杨华德, 陈芳远. 1986. 野败型杂交水稻不育性及恢复性的遗传研究[J]. 广西农学院学报, 9(2): 61-69. (Yang H D, Chen F Y.1986. A study on heredity of hybrid rice with wild abortive cytoplasm male sterility and restore character[J]. Guangxi Journal of Agricultural College, 9(2): 61-69.) [16] 游年顺, 黄利兴, 雷上平, 等. 2003. 水稻微效恢复基因与不育系选育研究[J]. 江西农业大学学报, 25(4): 487-492. (You N S, Huang L X, Lei S P, et al.2003. Rice mini-efficient restoring gene and practice for breeding male sterile line[J]. Acta Agriculturae Universitis Jiangxiensis, 25(4): 487-492.) [17] 张桂权, 卢永根. 1987. 水稻质核互作孢子体雄性不育性的基因分析[J]. 作物学报, 13(1): 23-28. (Zhang G Q, Lu Y G.1987. Genetic analysis for the cytoplasmic-nuclear sporophytic male fertility in rice[J]. Acta Agronomica Sinica, 13(1): 23-28.) [18] 曾慧杰, 易自力, 蒋建雄, 等. 2006. 水稻雄性不育研究概况[J]. 湖南农业科学, (3): 15-18. (Zeng H J, Yi Z L, Jiang J X, et al. 2006. A research survey of male sterility in rice[J]. Hunan Agricultural Sciences, (3): 15-18.) [19] 曾千春, 周开达, 朱祯, 等. 2000. 中国水稻杂种优势利用现状[J]. 中国水稻科学, 14(4): 243-246. (Zeng Q C, Zhou K D, Zhu Z, et al.2000. Current status in the use of hybrid rice heterosis in China[J]. Chinese Journal of Rice Science, 14(4): 243-246.) [20] 郑秀萍, 周天理, 张功宙, 等. 1998. 龙特甫A杂株来源及其分析[J]. 杂交水稻, 13(1): 8-10. (Zheng X P, Zhou T L, Zhang G Z, et al.1998. Studies on the origin of extraneous plants in rice CMS line of Longtepu A[J]. Hybrid Rice, 13(1): 8-10.) [21] 周建霞, 张玉屏, 朱德峰, 等. 2017. 空气湿度和土壤水分对高温诱导水稻颖花不育的影响[J]. 江西农业学报, 29(2): 24-27. (Zhou J X, Zhang Y P, Zhu D F, et al.2017. Effects of air humidity and soil moisture on rice spikelet sterility induced by high temperature[J]. Acta Agricuhurae Jiangxi, 29(2): 24-27.) [22] 周天理, 陈金泉, 郑秀萍, 等. 1992a. 水稻不育系遗传提纯及其效果研究[J]. 中国农业科学, 25(3): 22-27. (Zhou T L, Chen J Q, Zheng X P, et al.1992. A method for genetic improvement of rice male sterile line[J]. Scientia Agricultura Sinica, 25(3): 22-27.) [23] 周天理, 郑秀萍, 陈丹, 等. 2000. 光照长度对三系杂交水稻不育系育性影响的研究[J]. 中国水稻科学, 14(4): 247-248. (Zhou T L, Zheng X P, Cheng D, et al.2000. Effect of photoperiods on fertility of cytoplasmic male sterile lines in rice[J]. Chinese Journal of Rice Science, 14(4): 247-248.) [24] 周天理, 郑秀萍, 陈金泉, 等. 1992b. 水稻不育系中杂株的来源及遗传分析[J], 作物学报, 18(1): 9-16. (Zhou T L, Zheng X P, Chen J Q, et al.1992. Studies on the origin and genetic analysis of abnormal plants appeared in MS lines of rice[J]. Acta Agronomica Sinica, 18(1): 9-16.) [25] Coen E S. Meyerowiz E M.1991. The war of the whorls: Genetic interactions controlling flower development[J]. Nature, 353(5): 31-37. [26] Duroc Y, Gaillard C, Hiard S, et al.2006. Nuclear expression of a cytoplasmic male sterility gene modifies mitochondrial morphology in yeast and plant cells[J]. Plant Science, 170: 755-767. [27] Fornara F, Parenicova L, Falasca G, et al.2004. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes[J]. Plant Physiology, 135(4): 2207-2219. [28] Luan J, Liu T R, Luo W Q, et al.2013. Mitochondrial DNA genetic polymorphism in thirteen rice cytoplasmic male sterile lines[J]. Plant Cell Reports, 32(4): 545-554. [29] Luo D P, Xu H, Liu Z L, et al.2013. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice[J]. Nature Genetics, 45(5): 573-577. [30] Weigel D, Meyerowitz E M.1994. The ABCs of floral homeotic genes[J]. Cell, 78: 203-209. [31] Schwarz-sommer Z, Huijser P, Nacken W, et al.1990. Genetic control of flower development by homeotic genes in Antirrhinum majus[J]. Science, 250: 931-936.