Abstract:Bacillus subtilis is a probiotics that can be added directly to the diet to improve the uptake of nutrients in animals. With the rapid development of gene technology, the expression system of B. subtilis is widely used in the livestock industry. In order to ameliorate the transformation efficiency of B. subtilis competent cells, different types and concentrations organic solvents were added in the process of competent cells preparation to optimize the transformation efficiency. In this study, 1.0%, 2.0%, 3.0%, 4.0% and 5.0% of the Tween-80, methanol and acetone were added in preparation of wild-type Bacillus subtilis LN competent cell. The number of viable bacteria was calculated by dilution plate counting method to determine the best addition reagent and its concentration. The plasmid pGEM-kpgt and pGEM-kmpgt with the length of 500 and 2 680 bp was transformed into individual competent cells. The transformation results were determined by PCR using P4326F/P4326R and KgF/KgR as primers and the transformation efficiency was calculated. The results showed that the count of viable competent cell is 546±13 cell/μL and the highest transformation efficiency is 52±4 transformants/μg DNA when adding 4% methanol in the preparation process. When the length of the target gene fragment was extended to 2~3 kb, the transformation efficiency was 29±2 transformants/μg. Through the optimization of the preparation method of the competent cell, the transformation efficiency of the competent cell of Bacillus subtilis was improved, which provides a potential tool for genetic engineering of Bacillus subtilis.
陆雁, 王青艳, 朱绮霞, 等. 2012. 枯草芽孢杆菌高效转化及其转化子验证方法[J]. 广西科学院学报, 28(2): 117-119.(Lu Y, Wang Q Y, Zhu Q X, et al. 2012. Method for Enhancing the Transformation Efficiency in Bacillus subtilis[J]. Journal of Guangxi Academy of Sciences, 28(2): 117-119.)韩小路. 2015. PEG介导的苹果果生刺盘孢Colletotrichum fructicola原生质体转化体系的研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 张荣. pp. 22-31. (Han X L. 2015. PEG-Mediated Transformation of Colletotrichum fructicola[D]. Thesis for M.S., Northwest A&F University , Supervisor:Zhang R. pp. 22-31. )赵伟睿, 胡升, 黄俊, 等. 2014. 微生物细胞通透性改善方法与策略[J]. 中国生物工程杂志, 34(3): 125-131. (Zhao W R, Hu S, Huang J, et al. Improve Microorganism Cell Permeability for Whole-Cell Bioprocess:Methods and Strategies[J]. China Biotechnology, 34(3): 125-131. )罗正, 张得玉, 孙业贵, 等. 2014. 益生菌替代肉鸡饲料中促生长抗生素的田间试验[J]. 饲料工业, 35(13): 22-24. (Luo Z, Zhang D Y, Sun Y D,et al. 2014. Field trials of probiotic replacing growth-promoting antibiotics in broiler production[J]. Feed Industry, 35(13): 22-24.)孙盛明, 苏艳莉, 张武肖, 等. 2016. 饲料中添加枯草芽孢杆菌对团头鲂幼鱼生长性能、肝脏抗氧化指标、肠道菌群结构和抗病力的影响[J]. 动物营养学报, 2: 507-514. (Sun S M, Su Y L, Zhang W X, et al. 2016. Effects of Dietary Bacillus subtilis on Growth Performance, Liver Antioxidant Ability, Intestinal Microflora Structure and Disease Resistance of Juvenile Blunt Snout Bream (Megalobrama amblycephala)[J]. Chinese Journal Of Animal Nutrition, 2: 507-514.)罗婵, 汤刚彬, 谢体三, 等. 2005. 感受态细胞制备与保存方法的比较研究[J]. 生物技术, 15(1): 52-54. (Luo C, Tang G B, Xie T S, et al. 2005. Comparative Study on Preparation and Storage of Competent Escherichia coli Cells[J]. Biotechnology,15(1) : 52-54.)王永乐, 王敏, 申雁冰, 等. 2008. 有机溶剂对大肠杆菌细胞膜的影响[J]. 天津科技大学学报, 23(4): 40-43.( Wang Y L, Wang M, Shen Y B, et al. 2008. Effect of Organic Solvents on the Cell Membrane of Escherichia coli[J]. Journal of Tianjing University of Science & Technology, 23(4): 40-43.)吴培, 张毅, 许喜林. 2008. 有机溶剂对酵母细胞膜完整性的作用机制研究[J]. 食品工业科技, 1: 301-303.( Wu P, Zhang Y, Xu X L. 2008. Research on mechanism of organic solvents on integrality of yeast cell membrane[J]. Science and Technology of Food Industry, 1: 301-303.)孙启娟. 2016. PHB2在TH17细胞中的调控作用[D]. 安徽医科大学, 导师: 沈际佳. pp. 22-31. (Sun Q J. 2016. The Role of PHB2 in the Regulation of TH17 Cells[D]. Thesis for M.S., Supervisor: Shen J J. pp. 22-31. )王丙莲, 冯东, 梁晓辉, 等. 2016. 甘油及甲醇补料策略对毕赤酵母表达猪α-干扰素的影响[J]. 激光生物学报, 25(6): 21-26.(Wang B L, Feng D, Liang X H, et al. 2016. Effects of Glycerol and Methanol Supplementation on Porcine Interferon α ( PIFN-α) Expression of Pichia Pastoris[J]. Acta Laser Biology Sinica, 25(6): 21-26.) 李春艳, 冯凤兆, 冯露, 等. 2015. 野生型枯草芽孢杆菌N4的spizizen转化法优化[J]. 东北农业大学学报, 42, (2): 78-82.(Li C Y, Feng F Z, Feng L, et al. 2015. Optimization of the spizizen method for wild-type Bacillus subtilis N4 transformation[J]. Journal of Northeast Agricultural University, 42, (2): 78-82.) 魏艳, 张丹, 蔡恒, 等. 2011. 适用于野生型枯草芽孢杆菌转化有机溶剂方法的建立和优化[J]. 生物学通报, 46(12): 42-45.(Wei Y, Zhang D, Cai H, et al . 2011. Establishment and Optimization of Organic Solvent for Transformation of Wild-type Bacillus subtilis [J]. Bulletin of Biology, 46(12): 42-45.)隋森芳. 2003. 膜分子生物学[M]. 高等教育出版社, 北京. pp. 47-62. (Sui S F. 2003. Molecular Membrane Biology. Higher Education Press, Beijing. pp. 47-62.)Chang S, Cohen S N. 1979. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA[J]. Molecular Genetics and Genomics, 168(1): 111-115. De L A, Garcia B, Barbad L R A P, et al. 2003. Periplasmic penicillin G acylase activity in recombinant Escherichia coli cells permeabilized with organic solvents[J]. Process Biochemistry, 39(3): 301-305. Hopwood D A. 2007. How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them [J]. Molecular Microbiology, 63(4): 937–940. Loison P, Gervais P, Perrier-Cornet J M, et al. 2016. Effect of ethanol perturbation on viscosity and permeability of an inner membrane in Bacillus subtilis spores[J]. Biochimica et Biophysica Acta - Biomembranes, 1858(9): 2060-2069. Miras M, Dubnau D. 2016. A DegU-P and DegQ-Dependent Regulatory Pathway for the K-state in Bacillus subtilis[J]. Frontiers in Microbiology, 7(a000406). Pablo T, David D. 1999. Competence for transformation: a matter of taste[J]. Curr Opin Microbiol, 2(6): 588-592.Rahmer R, Heravi K M, Altenbuchner J. 2016. Construction of a Super-Competent Bacillus subtilis 168 Using the Pmt/A-comKSInducible Cassette[J]. Frontiers in Microbiology, 6: 1-11. Rezzadori K, Penha F M, Proner M C, et al. 2015. Evaluation of reverse osmosis and nanofiltration membranes performance in the permeation of organic solvents[J]. Journal of Membrane Science, 492: 478-489. Spizizen J. 1958. Transformation of Biochemically Deficient Strains of Bacillus subtilis by Deoxyribonucleate[J]. Proceedings of the National Academy of Sciences of the United States of America, 44(10):1072-1078.Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions[J]. Molecular Microbiology, 56(4): 845-857. Sun Y, Cheng J Y. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review[J]. Bioresource Technollgy, 83(1): 1-11. Tanaka K, Henry C S, Zinner J F, et al. 2012. Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model[J]. Nucleic Acids Research, 41(1): 687-699. Uttlová P, Pinkas D, Bechyňková O, et al. 2016. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure.[J]. Biochimica et Biophysica Acta - Biomembranes, 1858(12): 2965-2971. Vermeulen C A,Venema G. 1974. Electron microscope and autoradiographic study of ultrastructutal aspects of competence and deoxyribonucleic acid absorption in Bacillus subtilis:ultrastructure of competent and noncompetent cells and cellular changes during development of competence[J]. Journal of Bacetriol, 118: 334-341. Xue G B, Jennifer S J, Brian P D. 1999. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis[J]. Journal of Microbiological Methods, 34(3): 183-191. Yang Y, Wu H J, Lin L, et al. 2015. A plasmid-born Rap-Phr system regulates surfactin production, sporulation and genetic competence in the heterologous host, Bacillus subtilis OKB105[J]. Applied Microbiology and Biotechnology, 99(17):7241-7252.