| 
					
						|  |  
    					|  |  
    					| Identification, Expression Analysis and Development of CRISPR/Cas9-Edited Materials for the BnphyA Gene Family in Rapeseed (Brassica napus) |  
						| LI Pu, LIU Han-Xuan, XIE Chang-Gen* |  
						| College of Life Sciences, Northwest A&F University, Yangling 712100, China |  
						|  |  
					
						| 
								
									| 
											
                        					 
												
													
													    |  |  
														| 
													
													    | Abstract  Brassica napus, an economically vital oilseed crop in China, exhibits significant commercial and ornamental value. Phytochrome A (phyA), a core photoreceptor responsible for far-red light perception, plays crucial roles in regulating plant growth and abiotic stress responses. In this study, BnphyA gene family members in B. napus were systematically identified through bioinformatics screening and their expression patterns across tissues and under diverse abiotic stress conditions were analyzed. Fifteen BnphyA members were identified and categorized into 3 subfamilies. Phylogenetic analysis showed that Subfamily Ⅱmembers, including BnaA06G0057900ZS and BnaA09G0661700ZS, exhibited the closest evolutionary relationship with Arabidopsis thaliana AtphyA (AT1G09570). Structural analysis revealed conserved PHY-GAF-PAS_2-HATPase domains across all members. Cis-regulatory element screening identified light-responsive, developmental, and stress-associated motifs in BnphyA promoters. Chromosomal mapping indicated that homologs were predominantly localized near chromosomal termini. Tissue-specific expression profiling revealed upregulated BnphyA expression in roots and seeds, with predominant root-specific responses to cold, heat, drought, and osmotic stresses. Subcellular localization assays indicated cytoplasmic distribution of inactive BnphyA proteins. Heterologous complementation of A. thaliana phyA-211 mutants failed to restore wild-type phenotypes. CRISPR/Cas9-mediated editing generated multiple mutant lines in '19YB437' cultivars, including base substitutions (TGC→CGC) and deletions at the BnaA06G0057900ZS target site. This study provides a theoretical foundation and essential genetic resources for further investigation of the BnphyA gene family's functions. |  
															| Received: 21 April 2025 |  
															|  |  
															| Corresponding Authors:
																*changen.xie@nwafu.edu.cn |  |  |  |  
													
																												  
															| [1] 陈雨欣, 吴迪, 赵磊. 2022. CRISPR/Cas9技术在油菜多倍体基因组编辑中的优化与应用[J]. 中国农业科学, 55(12): 2311-2322. (Chen Y X, Wu D, Zhao L.2022. Optimization and application of CRISPR/Cas9 technology in polyploid genome editing of Brassica napus[J]. Scientia Agricultura Sinica, 55(12): 2311-2322.)
 [2] 姜敏, 李魏, 董铮, 等. 2017.光敏色素对植物抗逆反应的调控研究进展[J]. 生物技术通报, 33(7): 15-21.
 (Jiang M, Li W, Dong Z, et al.2017. Recent advances on the regulation of phytochrome in plant defense resistance[J]. Biotechnology Bulletin, 33(7): 15-21.)
 [3] 王平, 王春语, 赵子良, 等. 2020.高粱光敏色素 A 基因的克隆, 蛋白结构与长短日照诱导表达模式[J].分子植物育种, 18(6): 1748-1754.
 (Wang P, Wang C Y, Zhao Z L, et al.2020. Cloning, protein structure, and photoperiod-induced expression patterns of the phytochrome A gene in Sorghum bicolor[J]. Molecular Plant Breeding, 18(6): 1748-1754.)
 [4] 张华, 李伟, 王明. 2021. 甘蓝型油菜光敏色素基因家族的全基因组鉴定与表达分析[J].作物学报, 47(8): 1456-1468.
 (Zhang H, Li W, Wang M.2021. Genome-wide identification and expression analysis of the phytochrome gene family in Brassica napus[J]. Acta Agronomica Sinica, 47(8): 1456-1468.)
 [5] Alba R, Kelmenson P M, Cordonnier-Pratt M M, et al.2000. The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms[J]. Molecular Biology and Evolution, 17(3): 362-373.
 [6] Ballaré C L, Pierik R.2017. The shade-avoidance syndrome: Multiple signals and ecological consequences[J]. Plant, Cell & Environment, 40(11): 2530-2543.
 [7] Cao Y, Zhang D, Li B, et al.2023. Molecular characterization and functional analyses of maize phytochrome A photoreceptors[J]. Plant Physiology, 194(4): 2213-2216.
 [8] Delker C, Sonntag L, James G V, et al.2014. The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis[J]. Cell Reports, 9(6): 1983-1989.
 [9] Ernesto Bianchetti R, Silvestre Lira B, Santos Monteiro S, et al.2018. Fruit-localized phytochromes regulate plastid biogenesis, starch synthesis, and carotenoid metabolism in tomato[J]. Journal of Experimental Botany, 69(15): 3573-3586.
 [10] Gao Y, Wang L, Zhang T, et al.2021. Integration of light and ABA signaling pathways in Brassica napus through phytochrome-interacting factors[J]. Plant Physiology, 187(3): 1452-1466.
 [11] Hu J, Li J, Gao C, et al.2021. Genome-wide analysis of phytochrome gene families in polyploid crops highlights functional diversification under environmental stress[J]. Plant Biotechnology Journal, 19(7): 1325-1338.
 [12] Jiang H W, Peng K C, Hsu T Y, et al.2023. Arabidopsis FIN219/JAR1 interacts with phytochrome A under far-red light and jasmonates in regulating hypocotyl elongation via a functional demand manner[J]. PLoS Genetics, 19(5): e1010779.
 [13] Jiang Z, Xu G, Jing Y, et al.2016. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis[J]. Nature Communications, 7: 12377.
 [14] Karniol B, Wagner J R, Walker J M, et al.2005. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors[J]. The Biochemical Journal, 392(Pt 1): 103-116.
 [15] Kim D, Park S, Lee J, et al.2020. Phytochrome A coordinates with HY5 to regulate seed germination under far-red light in Arabidopsis[J]. The Plant Journal, 103(2): 725-738.
 [16] Li S, Wang X, Chen F, et al.2020. CRISPR/Cas9-based gene editing in Brassica napus: Challenges and strategies for polyploid genome manipulation[J]. Trends in Plant Science, 25(12): 1209-1222.
 [17] Lin X, Dong L, Tang Y, et al.2022. Novel and multifaceted regulations of photoperiodic flowering by phytochrome A in soybean[J]. Proceedings of the National Academy of Sciences of the USA, 119(41): e2208708119.
 [18] Liu H, Song S, Zhang H, et al.2022. Signaling transduction of ABA, ROS, and Ca²+ in plant stomatal closure in response to drought[J]. International Journal of Molecular Sciences, 23(23): 14824.
 [19] Liu Z, Zhang Y, Cheng M, et al.2023. Light quality modulates drought tolerance through phytochrome-mediated ABA signaling in Arabidopsis and Brassica napus[J]. Proceedings of the National Academy of Sciences of the USA, 120(12): e2214567120.
 [20] Ma L, Han R, Yang Y, et al.2023. Phytochromes enhance SOS2-mediated PIF1 and PIF3 phosphorylation and degradation to promote Arabidopsis salt tolerance[J]. The Plant Cell, 35(8): 2997-3020.
 [21] Podolec R, Wagnon, T B, et al.2022. Arabidopsis B-box transcription factors BBX20-22 promote UVR8 photoreceptor-mediated UV-B responses[J]. Plant Journal, 111(2):422-439.
 [22] Sasse A, Chikina M, Mostafavi S, 2024. Unlocking gene regulation with sequence-to-function models[J]. Nature Methods, 21(8): 1374-1377.
 [23] Sohn S I, Thamilarasan S K, Pandian S, et al.2022. Interspecific hybridization of transgenic Brassica napus and Brassica rapa-an overview[J]. Genes, 13(8): 1442.
 [24] Song J, Li Z, Liu H, et al.2021. CRISPR/Cas9-mediated base editing in Brassica napus for targeted improvement of agronomic traits[J]. Plant Biotechnology Journal, 19(11): 2145-2157.
 [25] Song Y H, Shim H A, Kinmonth T, et al.2015. Photoperiodic flowering: Time measurement mechanisms in leaves[J]. Annual Review of Plant Biology, 66: 441-464.
 [26] Wang H, Li C, Zhang Y, et al.2023. Light signaling cross-talk in plant stress responses: A mechanistic overview[J]. Journal of Experimental Botany, 74(10): 3123-3138.
 [27] Yang L, Cao H, Zhang X, et al.2021. Genome-wide identification and expression analysis of tomato ADK gene family during development and stress[J]. International Journal of Molecular Sciences, 22(14): 7708
 [28] Yuan J, Ott T, Hiltbrunner A.2023. Phytochromes and flowering: Legumes do it another way[J]. Trends in Plant Science, 28(4): 379-381.
 [29] Zhang L, Li H, Zhou Y, et al.2022a. Functional redundancy and subfunctionalization of phytochrome genes in allotetraploid Brassica napus[J]. New Phytologist, 234(5): 1783-1796.
 [30] Zhang X, Fang T, Huang Y, et al.2022b. Transcriptional regulation of photomorphogenesis in seedlings of Brassica napus under different light qualities[J]. Planta, 256(4): 77.
 |  
											 
											 |  |  |