|
|
The mTOR Signaling Pathway Regulating Milk Protein Synthesis in Mammary Epithelial Cells of Dairy Cows (Bos taurus) |
YANG Song-Hua, DU Rui-Fang, GAO Yuan-Da, LI Fei, GUO Long* |
College of Pastoral Agriculture Science and Technology/State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, China |
|
|
Abstract Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine protein kinase with important regulatory roles in cell growth and many biosynthetic and catabolic processes, especially in mammary casein synthesis. mTOR signaling pathway plays a key role in determining milk yield and quality. Amino acids can be used as signaling molecules to promote the phosphorylation of the mTOR signaling pathway and regulate the synthesis of milk proteins in mammary epithelial cells of dairy cows (Bos taurus). This paper focuses on the structure and function of the mTOR signaling pathway in mammary cells, and reveals the amino acid sensing system of mTOR signaling in the regulation of milk protein synthesis in the light of the progress of related research, with a view to providing reference for further optimizing the amino acid nutrition of dairy cows, improving the efficiency of amino acid utilization, and then improving the yield and quality of cow milk.
|
Received: 14 October 2024
|
|
Corresponding Authors:
*guolong@lzu.edu.cn
|
|
|
|
[1] 陈娇. 2022. 苯丙氨酸调控奶牛乳腺上皮细胞酪蛋白合成的机理研究[D]. 硕士学位论文, 兰州大学, 导师: 郭龙. pp. 9-10. (Chen J.2022. Mechanism on the regulation of milk casein synthesis in mammary epithelial cells of dairy cows by phenylalanine[D]. Thesis for M.S., Lanzhou University, Supervisor: Guo L, pp. 9-10.) [2] 吕佳栋. 2017. 低蛋白过瘤胃氨基酸补饲日粮对奶牛乳腺组织氨基酸和葡萄糖转运载体的影响[D]. 硕士学位论文, 山东农业大学, 导师: 王中华. pp. 7-10. (Lv J D.2017. Effects of low protein diets supplemented with rumen-protected amino acid on the expression of amino acid transporters and glucose transporters and glucose transporters in the mammary gland of lactating cows[D]. Thesis for M.S., Shandong Agricultural University, Supervisor: Wang Z H, pp. 7-10.) [3] 孙梅, 邢媛媛, 李大彪. 2022. 乳腺对氨基酸的摄取及其调控机制研究进展[J]. 动物营养学报, 34(02): 720-726. (Sun M, Xing Y Y, Li D B.2022. Advances in amino acids uptake and its regulatory mechanism in mammary gland[J]. Chinese Journal of Animal Nutrition, 34: 720-726.) [4] 孙振稳. 2018. 氨基酸、葡萄糖和胰岛素对奶牛乳腺上皮细胞增殖及乳蛋白合成的影响[D]. 硕士学位论文, 山东农业大学, 导师: 王中华. pp. 29-32. (Sun Z W.2018. Effects of essential amino acids, glucose and insulin on proliferation and protein synthesis in bovine mammary epithelial cells[D]. Thesis for M.S., Shandong Agricultural University, Supervisor: Wang Z H, pp. 29-32.) [5] Anandapadamanaban M, Masson G R, Perisic O, et al.2019. Architecture of human Rag GTPase heterodimers and their complex with mTORC1[J]. Science, 366(6462): 203-210. [6] Appuhamy J A, Bell A L, Nayananjalie W A, et al.2011. Essential amino acids regulate both initiation and elongation of mRNA translation independent of insulin in MAC-T cells and bovine mammary tissue slices[J]. The Journal of Nutrition, 141(6): 1209-1215. [7] Appuhamy J A, Nayananjalie W A, England E M, et al.2014. Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells[J]. Journal of Dairy Science, 97(1): 419-429. [8] Bar-Peled L, Chantranupong L, Cherniack A D, et al.2013. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1[J]. Science, 340(6136): 1100-1106. [9] Ben-Sahra I, Hoxhaj G, Ricoult S J H, et al.2016. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle[J]. Science, 351(6274): 728-733. [10] Bond P.2016. Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance[J]. Journal of the International Society of Sports Nutrition, 13(1): 8. [11] Burgoyne R D, Duncan J S.1998. Secretion of milk proteins[J]. Journal of Mammary Gland Biology and Neoplasia, 3(3): 275-286. [12] Chantranupong L, Scaria S M, Saxton R A, et al.2016. The CASTOR proteins are arginine sensors for the mTORC1 pathway[J]. Cell, 165(1): 153-164. [13] Fingar D C.2015. Rag ubiquitination recruits a GATOR1: Attenuation of amino acid-induced mTORC1 signaling[J]. Molecular Cell, 58(5): 713-715. [14] Fu W, Hall M N.2020. Regulation of mTORC2 signaling[J]. Genes (Basel), 11(9): 1045. [15] Guo Z, Zhao K, Feng X, et al.2019. mTORC2 regulates lipogenic gene expression through PPARγ to control lipid synthesis in bovine mammary epithelial cells[J]. BioMed Research International, 2019(1): 5196028. [16] Hirose E, Nakashima N, Sekiguchi T, et al.1998. RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway[J]. Journal of Cell Science, 111(Pt 1): 11-21. [17] Huang X, Yoder P S, Teixeira I, et al.2021. Assessing amino acid uptake and metabolism in mammary glands of lactating dairy cows intravenously infused with methionine, lysine, and histidine or with leucine and isoleucine[J]. Journal of Dairy Science, 104(3): 3032-3051. [18] Hundal H S, Taylor P M.2009. Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling[J]. American Journal of Physiology-Endocrinology and Metabolism, 296(4): E603-613. [19] Inoki K, Li Y, Xu T, et al.2003a. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling[J]. Genes & Development, 17(15): 1829-1834. [20] Inoki K, Zhu T, Guan K-L.2003b. TSC2 mediates cellular energy response to control cell growth and survival[J]. Cell, 115(5): 577-590. [21] Jewell J L, Russell R C, Guan K L.2013. Amino acid signalling upstream of mTOR[J]. Nature Reviews Molecular Cell Biology, 14(3): 133-139. [22] Jung J, Genau H M, Behrends C.2015. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9[J]. Cellular and Molecular Biology, 35(14): 2479-2494. [23] Kakumoto K, Ikeda J, Okada M, et al.2015. mLST8 promotes mTOR-mediated tumor progression[J]. Public Library of Science One, 10(4): e0119015. [24] Kim J, Guan K L.2019. mTOR as a central hub of nutrient signalling and cell growth[J]. Nature Cell Biology, 21(1): 63-71. [25] Kim J E, Lee H G.2021. Amino acids supplementation for the milk and milk protein production of dairy cows[J]. Animals (Basel), 11(7): 2118. [26] Kitada M, Xu J, Ogura Y, et al.2020. Mechanism of activation of mechanistic target of rapamycin complex 1 by methionine[J]. Frontiers in Cell and Developmental Biology, 8: 715. [27] Laplante M, Sabatini D M.2012. mTOR signaling in growth control and disease[J]. Cell, 149(2): 274-293. [28] Ma X M, Blenis J.2009. Molecular mechanisms of mTOR-mediated translational control[J]. Nature Reviews Molecular Cell Biology, 10(5): 307-318. [29] Magnuson B, Ekim B, Fingar D C.2012. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks[J]. Biochemical Journal, 441(1): 1-21. [30] Menon S, Dibble C C, Talbott G, et al.2014. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome[J]. Cell, 156(4): 771-785. [31] Mossmann D, Park S, Hall M N.2018. mTOR signalling and cellular metabolism are mutual determinants in cancer[J]. Nature Reviews Cancer, 18(12): 744-757. [32] Nishimura Y, Chunthorng-Orn J, Lord S, et al.2022. Ubiquitin E3 ligase atrogin-1 protein is regulated via the rapamycin-sensitive mTOR-S6K1 signaling pathway in C2C12 muscle cells[J]. American Journal of Physiology-Cell Physiology, 323(1): C215-C225. [33] Pszczolkowski V L, Arriola Apelo S I.2020. The market for amino acids: Understanding supply and demand of substrate for more efficient milk protein synthesis[J]. Journal of Animal Science and Biotechnology, 11(1): 108. [34] Rogala K B, Gu X, Kedir J F, et al.2019. Structural basis for the docking of mTORC1 on the lysosomal surface[J]. Science, 366(6464): 468-475. [35] Sancak Y, Thoreen C C, Peterson T R, et al.2007. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase[J]. Molecular Cell, 25(6): 903-915. [36] Saxton R A, Sabatini D M.2017. mTOR signaling in growth, metabolism, and disease[J]. Cell, 169(2): 361-371. [37] Scalise M, Galluccio M, Pochini L, et al.2019. Insights into the transport side of the human SLC38A9 transceptor[J]. Biochimica Et Biophysica Acta-biomembranes, 1861(9): 1558-1567. [38] Schürmann A, Brauers A, Massmann S, et al.1995. Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases[J]. Journal of Biological Chemistry, 270(48): 28982-28988. [39] Sekiguchi T, Hirose E, Nakashima N, et al.2001. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B[J]. Journal of Biological Chemistry, 276(10): 7246-7257. [40] Shen K, Valenstein M L, Gu X, et al.2019. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases[J]. Journal of Biological Chemistry, 294(8): 2970-2975. [41] Simcox J, Lamming D W.2022. The central moTOR of metabolism[J]. Developmental Cell, 57(6): 691-706. [42] Szwed A, Kim E, Jacinto E.2021. Regulation and metabolic functions of mTORC1 and mTORC2[J]. Physiological Reviews, 101(3): 1371-1426. [43] Taylor P M.2014. Role of amino acid transporters in amino acid sensing[J]. American Journal of Clinical Nutrition, 99(1): 223S-230S. [44] Wang L, Lin Y, Bian Y, et al.2014. Leucyl-tRNA synthetase regulates lactation and cell proliferation via mTOR signaling in dairy cow mammary epithelial cells[J]. International Journal of Molecular Sciences, 15(4): 5952-5969. [45] Wang S, Tsun Z Y, Wolfson R L, et al.2015. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1[J]. Science, 347(6218): 188-194. [46] Wolfson R L, Chantranupong L, Saxton R A, et al.2016. Sestrin2 is a leucine sensor for the mTORC1 pathway[J]. Science, 351(6268): 43-48. [47] Wolfson R L, Sabatini D M.2017. The dawn of the age of amino acid sensors for the mTORC1 pathway[J]. Cell Metabolism, 26(2): 301-309. [48] Yang H, Yu Z, Chen X, et al.2021. Structural insights into TSC complex assembly and GAP activity on Rheb[J]. Nature Communications, 12(1): 339. [49] Ye J, Palm W, Peng M, et al.2015. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2[J]. Genes & Development, 29(22): 2331-2336. [50] Yonezawa K, Tokunaga C, Oshiro N, et al.2004. Raptor, a binding partner of target of rapamycin[J]. Biochemical and Biophysical Research Communications, 313(2): 437-441. [51] Yoon I, Nam M, Kim H K, et al.2020. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1[J]. Science, 367(6474): 205-210. [52] Zhang S, Lin X, Hou Q, et al.2021. Regulation of mTORC1 by amino acids in mammalian cells: A general picture of recent advances[J]. Animal Nutrition, 7(4): 1009-1023. |
|
|
|