|
|
Expression Characteristics Analysis of Goat (Caprahircus) Phosphodiesterase 4B (PDE4B) and Its Effect on the Differentiation ofIntramuscular Precursor Adipocytes |
LI Jin-Lan1,2, SUN Shi-Yu1,2, HE Xiao-Fei3, ZHANG Li-Yi1,2, LIN Ya-Qiu1,2, LIU Wei1,2, XING Jia-Ni1,2* |
1 College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; 2 Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; 3 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China |
|
|
Abstract Intramuscular fat (IMF) in goat (Capra hircus) is an important factor in affecting meat quality traitssuch as flavor and juiciness. This study focused on the cloning and functional analysis of phosphodiesterases4B (PDE4B), to delineate its regulatory role in modulating the differentiation dynamics of caprine intramuscular preadipocytes. In this study, the intramuscular precursor adipocytes of JianZhou big-eared goats were used to amplify the target gene fragments by RT-PCR, and their sequences were analyzed by onlinebioinformatics tools. The expression level of PDE4B gene in different tissues and different differentiation stages of intramuscular precursor adipocytes in goats was detected using qPCR. The PDE4B overexpression plasmid (pEGFP-N1-PDE4B) was successfully engineered via molecular subcloning and subsequentlytransfected into caprine intramuscular preadipocytes. Subsequent Oil red O staining and qPCR assays were employed to assess its regulatory effects on intracellular lipid droplet deposition, coupled with transcriptional profiling of key adipogenic differentiation, triglyceride biosynthesis, and lipolytic metabolism markers. Theresults showed that the length of the cloned PDE4B gene was 1 815 bp, including the coding sequence (CDS)region of 1 629 bp, which encoded a total of 542 amino acids. Furthermore, the expression of PDE4B gene was significantly higher in goat lung than in other tissues examined (P<0.01), and reached the highest expression after 48 h induction of differentiation in intramuscular adipocytes (P<0.01). Oil red O staining and the quantitative results after PDE4B overexpression showed that there were significant increase in lipid droplet aggregation (P<0.05). The mRNA expression level of differentiation marker genes CCAAT/ enhancerbindingprotein α (C/EBPα), C/EBPβ and triglyceride synthesis marker genes activator protein 2 (AP2) and fatty acid synthase (FASN) were extremely significantly up-regulated after overexpression of PDE4B gene (P<0.01). Meanwhile, the expression of triglyceride catabolism marker genes adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and lipoprotein lipase (LPL) were significantly down-regulated (P<0.01). In conclusion, PDE4B gene might positively regulate the process of intramuscularprecursor adipocyte differentiation in goats, and this effect might be realized by up-regulating the expression of C/EBPα, C/EBPβ, AP2, and FASN. This study provides data support for revealing the molecular mechanism of intramuscular precursor adipocyte differentiation regulated by PDE4B in goats.
|
Received: 03 June 2024
|
|
Corresponding Authors:
*80300244@swun.edu.cn
|
|
|
|
[1] 俄木曲者, 熊朝瑞, 范景胜, 等. 2014. 简州大耳羊产肉性能世代选育进展及肉品质研究[J]. 中国草食动物科学,34(03): 9-12. (Omu Q Z, Xiong Z R, Fan J S, et al.2014. Progress of generation selection for meat produc-tion performance and meat quality of Jianzhou big-eared sheep[J]. China Herbivore Science, 34(03): 9-12.) [2] 廉红霞.2007. 猪肌内脂肪代谢信息传导途径相关因子研究 [D]. 博士学位论文, 内蒙古农业大学, 导师: 卢德勋, 高民, pp.1-2. (Lian H X.2007. Study on factors re-lated to the information transduction pathway of intra-muscular fat metabolism in pigs [D]. Thesis for Ph. D., Inner Mongolia Agricultural University, Suppervisors: Lu D X, Gao M, pp. 1-2.) [3] 李雪旻.2023. LPL 基因的增强子鉴定及其在脂肪沉积中的功能研究 [D]. 硕士学位论文, 四川农业大学, 导师: 李明洲, 潘登科, pp. 3. (Li X M. 2023. Identification of en-hancer of LPL gene and its function in fat deposition [D]. Thesis for M. S., Sichuan Agricultural University, Suppervisors: Li M Z, Fan D K, pp. 3.) [4] 李君, 梁文双, 赫秋亚, 等. 2019. SIRT1/FoxO1 通路对奶山羊乳腺上皮细胞脂质合成的影响[J]. 中国畜牧杂志,55(10): 20-25. (Li J, Liang W S, He Q Y, et al.2019. Ef-fect of SIRT1/FoxO1 pathway on lipid synthesis in mammary epithelial cells of dairy goats[J]. Chinese Journal of Animal Science, 55(10): 20-25.) [5] 阮班军, 代鹏, 王伟, 等. 2014. 蛋白质翻译后修饰研究进展[J]. 中国细胞生物学学报, 36(07): 1027-1037. (Ruan B J, Dai P, Wang W, et al.2014. Research progress of pro-tein post-translational modification[J]. Chinese Journal of Cell Biology, 36(07): 1027-1037.) [6] 邵鹏, 唐崟梅, 林亚秋, 等. 2023. PSMD9 对山羊前体脂肪细胞脂质沉积的调控作用研究[J]. 畜牧兽医学报 , 54(09): 3653-3663. (Shao P, Tang Y M, Lin Y Q, et al.2023. Effect of PSMD9 on lipid deposition in goat pre-adipocytes[J]. Journal of Animal Husbandry and Veteri-nary Medicine, 54(09): 3653-3663.) [7] 宋薇, 官久强, 帅素容. 2008. 长白猪皮下脂肪细胞大小的发育性变化[J]. 畜禽业,(07): 28-30. (Song W, Guan J Q, Shuai S Y. 2008. Developmental changes in subcutane-ous adipocyte size in Long White pigs[J]. Livestock and Poultry Industry,(07): 28-30.) [8] 宋宇龙, 王亚亚, 张世平, 等. 2021. 从干预 SIRT1 表达探究急性应激影响糖尿病小鼠葡萄糖代谢和脂肪代谢的机制[J]. 现代生物医学进展, 21(24): 4623-4627. (Song Y L, Wang Y Y, Zhang S P, et al.2021. Mechanisms of acute stress affecting glucose metabolism and lipid me-tabolism in diabetic mice probed by interfering with SIRT1 expression[J]. Progress in Modern Biomedicine,21(24): 4623-4627.) [9] 杨龙江, 戴瑞彤, 陈斌. 2000. 猪肌肉组织的性能及其脂肪的影响[J]. 肉类研究 ,(02): 17-9. (Yang L J, Dai R T, Chen B. 2000. Properties of porcine muscle tissues and their fat effects[J]. Meat Research,(02): 17-9.) [10] 张力懿, 李鑫, 许晴, 等. 2023. miR-23b-3p 通过靶向 PDE4B 基因调控山羊肌内前体脂肪细胞的分化[J]. 生物工程学报, 39(12): 4887-4900. (Zhang L Y, Li X, Xu Q, et al.2023. miR-23b-3p regulates the differentiation of goat intramuscular precursor adipocytes by targeting the PDE4B gene[J]. Journal of Bioengineering, 39(12): 4887-4900.) [11] 张作艳, 李杨玲, 周旋, 等. 2022. 磷酸二酯酶的促肿瘤作用及其抑制剂抗肿瘤作用研究进展[J]. 中国药理学与毒理学杂志 , 36(11): 862-871. (Zhang Z Y, Li Y L, Zhou X X, et al.2022. Research progress on the tumor-pro-moting effect of phosphodiesterase and its antitumor ef-fect[J]. Chinese Journal of Pharmacology and Toxicolo-gy, 36(11): 862-871.) [12] 朱武政, 林亚秋, 江明锋, 等. 2016. 肉用山羊脂代谢相关基因与肌内脂肪含量的相关性分析[J]. 畜牧兽医学报,47(07): 1333-1341. (Zhu W Z, Lin Y Q, Jiang M F, et al.2016. Correlation analysis of lipid metabolism-relat-ed genes and intramuscular fat content in meat goats[J]. Acta Veterinaria et Zootechnica Sinica, 47(07): 1333-1341.) [13] Eichler J.2019. Protein glycosylation[J]. Current Biology, 29(7): R229-R231. [14] Fan Q, He R, Li Y, et al.2023. Studying the effect of hypero-side on recovery from cyclophosphamide induced oligo-asthenozoospermia[J]. Systems Biology in Reproduc-tive Medicine, 69(5): 333-346. [15] Herrmann F E, Hesslinger C, Wollin L, et al.2023. Corrigen-dum: BI 1015550 is a PDE4B inhibitor and a clinical drug candidate for the oral treatment of idiopathic pul-monary fibrosis[J]. Frontiers in Pharmacology, 14:1219760. [16] He Y F, Liu F Y, Zhang W X.2015. Tangeritin inhibits adipo-genesis by down-regulating C/EBPα, C/EBPβ, and PPARγ expression in 3T3-L1 fat cells[J]. Genetics and Molecular Research, 14(4): 13642-8. [17] Houslay M D, Adams D R.2003. PDE4 cAMP phosphodies-terases: Modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization[J]. The Biochemical Journal, 370(Pt 1): 1-18. [18] Khani S, Topel H, Kardinal R, et al.2024. Cold-induced ex-pression of a truncated adenylyl cyclase 3 acts as rheo-stat to brown fat function[J]. Nature Metabolism, 6:1053-1075. [19] Li J, Luo J, Wang H, et al.2015. Adipose triglyceride lipase regulates lipid metabolism in dairy goat mammary epi-thelial cells[J]. Gene, 554(1): 125-130. [20] Liu A, Pan W, Zhuang S, et al.2022. Cancer cell-derived exo-somal miR-425-3p induces white adipocyte atrophy[J]. Adipocyte, 11(1): 487-500. [21] Malodobra-Mazur M, Cierzniak A, Dobosz T.2019. Oleic ac-id influences the adipogenesis of 3T3-L1 cells via DNA Methylation and may predispose to obesity and obesity-related disorders[J]. Lipids in Health and Disease, 18(1): 230. [22] Miao Y, Peng L, Chen Z, et al.2023. Recent advances of Phosphodiesterase 4B in cancer[J]. Expert Opinion on Therapeutic Targets, 27(2): 121-132. [23] Oikarinen J, Hatamochi A, Decrombrugghe B.1987. Separate binding sites for nuclear factor 1 and a CCAAT DNA binding factor in the mouse alpha 2(I)collagen promoter[J]. The Journal of Biological Chemistry, 262(23): 11064-11070. [24] Otto T C, Lane M D.2005. Adipose development: From stem cell to adipocyte[J]. Critical Reviews in Biochemistry and Molecular Biology, 40(4): 229-242. [25] Sarjeant K, Stephens J M.2012. Adipogenesis[J]. Cold Spring Harbor Perspectives in Biology, 4(9): a008417. [26] Schick M A, Schlegel N.2022. Clinical implication of phos-phodiesterase-4-inhibition[J]. International Journal of Molecular Sciences, 23(3): 1209. [27] Thompson E D.2024. Neoplastic progression in macroscopic precursor lesions of the pancreas[J]. Archives of Pathol-ogy & Laboratory Medicine, 148(9): 980-988. [28] Xu S, Wang Y, Li Z, et al.2022. LncRNA GAS5 knockdown mitigates hepatic lipid accumulation via regulating MiR-26a-5p/PDE4B to activate cAMP/CREB pathway[J]. Frontiers in Endocrinology, 13: 889858. [29] Xu Z, Wu J, Zhou J, et al.2022. Integration of ATAC-seq and RNA-seq analysis identifies key genes affecting intra-muscular fat content in pigs[J]. Frontiers in Nutrition, 9:1016956. [30] Zhang R, Maratos-flier E, Flier J S.2009. Reduced adiposity and high-fat diet-induced adipose inflammation in mice deficient for phosphodiesterase 4B[J]. Endocrinology,150(7): 3076-3082. |
[1] |
WANG Cong-Liang, CHEN Wen-Bo, WAN Shi-Cheng, LI Jian-Nan, REN Zhao-Fei, HAN Bin, LI Na, LEI An-Min, DU Xiao-Min, QU Lei, ZHU Hai-Jing, HUA Jin-Lian. Production and Determination of Blood Physiology, Biochemistry and Growth Performance of Goats (Capra hircus) Overexpressing the NRAMP1 Gene[J]. 农业生物技术学报, 2025, 33(4): 837-846. |
|
|
|
|