|
|
Identification and Expression Analysis of HMGR Gene Family in Jujube (Ziziphus jujuba) |
LI Na1, HAN Hong-Yan1, SONG Yu-Qin2, FENG Xin-Xin2, LI Liu-Lin2*, LI Jie3, HUA Yan-Bin4 |
1 Department of Biological Sciences and Technology, Jinzhong University, Jinzhong 030619, China; 2 College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; 3 College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China; 4 Jiexiu Agriculture and Rural Bureau, Jinzhong 032000, China |
|
|
Abstract Terpenoids are the main substances for the medicinal function of jujube (Ziziphus jujuba). 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) plays an important role in the biosynthesis of plant terpenoids. In order to further study the function of jujube HMGR genes, this study used HMM to identify the jujube HMGR gene family. Bioinformatics analysis software was used to analyze the physicochemical characteristics, gene structure, and evolutionary relationship of ZjHMGR genes. qRT-PCR was used to analyze the expression pattern of HMGR genes. The results showed that there were 21 HMGR gene members in the jujube genome, which were named ZjHMGR1~ZjHMGR21 according to their positions on the chromosome. The 21 HMGR genes were located on 10 chromosomes and 2 unplaced genomic scaffolds. The open reading frame (ORF) length of the ZjHMGR genes was 271 to 3 425 bp, encoding 88 to 1 122 amino acids, and the molecular weight ranged from 9 827.05 to 124 950.93 kD. The phylogenetic analysis of jujube and arabidopsis (Arabidopsis thaliana), apple (Malus pumila), pear (Pyrus bretschneideri), tobacco (Nicotiana tabacum) and watermelon (Citrullus lanatus) showed that the ZjHMGR1 was a separate group, while the ZjHMGR11 and ZjHMGR12, ZjHMGR5 and ZjHMGR10 were classified as separate class. And these 5 gene family members had collinear relationships with arabidopsis, apple, pear and watermelon. There were hormone-related cis-elements in the 2.0 kb promoter region of ZjHMGR gene, among which 11 candidate genes had gibberellin, methyl jasmonate and abscisic acid response cis-elements, 8 candidate genes had auxin response cis-elements, and 12 candidate genes have salicylic acid response cis-elements. Compared with young fruits, the expression level of ZjHMGR gene in mature fruits was significantly increased. The expression levels of the ZjHMGR genes in 'Linhuang No.1' and 'Muzao' fruits were significantly negatively correlated with the contents of chlorophyll a, chlorophyll b, total chlorophyll and anthocyanins, but positively correlated with the contents of carotenoids.ZjHMGR played an important role in fruit ripening. This study provides reference for genetic improvement of the synthesis of jujube terpenoids.
|
Received: 15 July 2024
|
|
Corresponding Authors:
* liulin@163.com
|
|
|
|
[1] 蔡天娇, 王瑞珍, 魏君慧, 等. 2018. 白桦脂酸与红枣总三萜酸对小鼠酒精肝损伤的保护作用[J]. 食品科学, 39(11): 191-195.(Cai T J, Wang R Z, Wei J H, et al.2018. Protective effects of betulinic acid and total triterpenic acids from red jujubes on alcoholic liver lnjury in mice[J]. Food Science, 39(11): 191-195.) [2] 陈俊宇, 姚玲窕, 许张婷, 等. 2024. 掌叶覆盆子HMGR基因家族的鉴定及表达分析[J]. 核农学报, 38(06): 1024-1034.(Chen J Y, Yao L Y, Xu Z T, et al.2024. Identification and expression analysis of HMGR gene family in Rubus chingii Hu[J]. Journal of Nuclear Agricultural Sciences, 38(06): 1024-1034.) [3] 丁富功, 侯泽豪, 卢奕霏, 等. 2022. 小麦不同组织器官叶绿素测定方法的比较研究[J]. 东北农业科学, 47(05): 111-115.(Ding F G, Hou Z H, Lu Y F, et al.2022. Comparative study on setermination of Chlorophyll in different tissues and organs of wheat[J]. Journal of Northeast Agricultural Sciences, 47(05): 111-115.) [4] 李洁, 武超, 贾祥堑,等. 2024. '壶瓶枣'果皮着色物质及其相关基因筛选[J]. 园艺学报, 51(08): 1728-1742.(Li J, Wu C, Jia X Q, et al.2024. Screening of Ziziphus jujuba 'Hupingzao' fruit coloring substances and their related genes[J]. Acta Horticulturae Sinica, 51(08): 1728-1742.) [5] 李娜. 2023. 枣果实蜡质合成关键基因挖掘与验证[D]. 硕士学位论文, 山西农业大学, 导师: 李六林, pp. 9-10.(Li N.2023. Mining and validation of key genes for wax synthesis in jujube fruit[D]. Thesis for M. S., Shanxi Agricultural University, Supervisor: Li L L, pp. 9-10.) [6] 李鹏. 2018. 生姜、大枣配伍功效浅析[J]. 中医学报, 33(1): 119-121.(Li P.2018. Efficacy analysis of compatibility of ginger and jujube[J]. Acta Chinese Medicine, 33(1): 119-121.) [7] 苏文炳, 原远, 白昀鹭, 等. 2019. 枇杷萜类物质鉴定与三萜酸合成研究进展[J]. 园艺学报, 46(09): 1727-1738.(Su W B, Yuan Y, Bai Y L, et al.2019. Advances in terpenoid ldentification and triterpene acid biosynthesis in loquat[J]. Acta Horticulturae Sinica, 46(09): 1727-1738.) [8] 吴普. 1982. 神农本草经[M]. 北京: 人民卫生出版社, pp. 21.(Wu P. 1982. Divine Farmer's Materia Medica[M]. Beijing: People's Medical Publishing House, pp. 21.) [9] 徐灵胎. 2014. 大枣[J]. 光明中医, 29(10): 2170.(Xu L T, Jujube[J]. Guangming Journal of Chinese Medicine, 29(10): 2170.) [10] 张玲, 张江宁. 2023. 木枣发酵过程中三萜酸、环磷酸腺苷含量以及味觉变化研究[J]. 食品与发酵工业, 49(08): 145-150.(Zhang L, Zhang J N.2023. Changes of triterpenic acid and cyclic AMP contents and taste sense during probiotics fermentation of Ziziphus jujube cv Muzao juice[J]. Food and Fermentation Industries, 49(08): 145-150.) [11] 张琼, 张雪丹, 王中堂, 等. 2018. 响应面法优化枣果三萜酸的提取工艺研究[J]. 山东农业科学, 50(04): 120-124.(Zhang Q, Zhang X D, Wang Z T, et al.2018. Study on extraction technology of jujube triterpenic acids optimized by response surface method[J]. Shandong Agricultural Sciences, 50(04): 120-124.) [12] 张向前, 王贵峰, 王萌萌, 等. 2017. 陕北红枣中三萜类物质的抗氧化性分析[J]. 分子植物育种, 15(08): 3267-3271.(Zhang X Q, Wang G F, Wang M M, et al.2017. The analysis of antioxidant capacities of triterpenoids of Chinese dates from north of Shaanxi[J]. Molecular Plant Breeding, 15(08): 3267-3271.) [13] 赵荣荣. 2018. 梨TPS和HMGR基因家族鉴定及PcHMGR1基因功能研究[D]. 硕士学位论文, 山东农业大学, 导师: 张元湖, pp. 37-40.(Zhao R R.2018. The identification of TPS and HMGR gene family in pear and functionalanalysis of PcHMGRI gene[J]. Thesis for M. S., Shandong Agricultural University, Supervisor: Zhang Y H, pp. 37-40.) [14] 周开兵, 苏举, 徐远锋, 等. 2007. 荔枝果皮着色与色素含量的关系[J]. 山地农业生物学报, 26(1): 30-33.(Zhou K B, Su J, Xu Y F, et al.2007. The peel pigmentation in relation to pigment content of litchi[J]. Journal of Mountain Agriculture and Biology, 26(1): 30-33.) [15] Chen C J, Wu Y, Li J W, et al.2023. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining[J]. Molecular Plant, 16: 1733-1742. [16] Fu Y L, Zhang Y L, Zhang R T.2021. Purification and antioxidant properties of triterpenic acids from blackened jujube (Ziziphus jujuba Mill.) by macroporous resins[J]. Food Science & Nutrition, 9(9):5070-5082. [17] Guo S, Duan J A, Tang Y, et al.2009. High-performance liquid chromatography-two wavelength detection of triterpenoid acids from the fruits of Ziziphus jujuba containing various cultivars in different regions and classification using chemometric analysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 49(5): 1296-1302. [18] Gutensohn M, Henry L K, Gentry S A, et al.2021. Overcoming bottlenecks for metabolic engineering of sesquiterpene production in tomato fruits[J]. Frontiers in Plant Science, 12: 691754-691754. [19] Kalita R, Modi M K, Sen P.2018. RNAi mediated silencing of 3-hydroxy-3-methylglutaryl-CoA reductases (HMGR) in Centella asiatica[J]. Gene Reports, 11: 52-57. [20] Kim Y, Lee O R, Oh J Y, et al.2014. Functional analysis of 3-Hydroxy-3-Methylglutaryl coenzyme A reductase encoding genes in triterpene saponin-producing ginseng[J]. Plant Physiology, 165(1): 373-387. [21] Liao P, Hemmerlin A, Bach T J, et al.2016. The potential of the mevalonate pathway for enhanced isoprenoid production[J]. Biotechnology Advances, 34(5): 697-713. [22] Liu M J, Zhao J, Cai Q L, et al.2014. The complex jujube genome provides insights into fruit tree biology[J]. Nature Communications, 5(1): 5315. [23] Liu W, Zhang Z Q, Li W, et al.2018. Genome-wide identification and comparative analysis of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene family in Gossypium[J]. Molecules, 23(2): 193. [24] Majewska M, Szymczyk P, Gomulski J, et al.2022. The expression profiles of the Salvia miltiorrhiza 3-Hydroxy-3-methylglutaryl-coenzyme A reductase 4 gene and its influence on the biosynthesis of tanshinones[J]. Molecules, 27(14): 4354. [25] Memelink J, Kijne J W, Heijden R, et al.2001. Genetic modification of plant secondary metabolite pathways using transcriptional regulators[J]. Advances in Biochemical Engineering-Biotechnology, 72: 103-125. [26] Moehninsi L I, Lange B M, Navarre D A.2020. Altering potato isoprenoid metabolism increases biomass and induces early flowering[J]. Journal of Experimental Botany, 71(14): 4109-4124. [27] Suzuki M, Kamide Y, Nagata N, et al.2010. Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels[J]. The Plant Journal, 37(5): 750-761. [28] Zhang M, Liu H, Wang Q, et al.2020. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase 5 gene from Malus domestica enhances oxidative stress tolerance in Arabidopsis thaliana[J]. Plant Physiology Biochemistry, 146: 269-277. [29] Zhao X C, Zhang Y R, Long T, et al.2022. Regulation mechanism of plant pigments biosynthesis: Anthocyanins, carotenoids, and betalains[J]. Metabolites, 12(9): 871 [30] Zheng T, Dong T, Haider M S, et al.2020. Brassinosteroid regulates 3-hydroxy-3-methylglutaryl CoA reductase to promote grape fruit development[J]. Journal of Agricultural and Food Chemistry, 68(43): 11987-11996. [31] Zheng T, Guan L B, Yu K, et al.2021. Expressional diversity of grapevine 3-hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) in different grapes genotypes[J]. BMC Plant Biology, 21(1): 279. |
|
|
|