|
|
Screening, Construction and Optimization of Microbial Communities for Multifunctional Biocontrol of Tobacco Brown Spot |
WU Xu-Yan1,2, LI Xing-Shan1,2, CUI Chuan-Bin4, WANG Ping-Ping4, HUANG Li-Li2,3,*, WANG Na-Na1,2,* |
1 College of Life Sciences, Northwest A&F University, Yangling 712100, China; 2 National Key Laboratory of Crop Stress Resistance and Efficient Production, Yangling 712100, China; 3 College of Plant Protection, Northwest A&F University, Yangling 712100, China; 4 Shaanxi Provincial Company, China National Tobacco Corporation, Xi'an 710000, China |
|
|
Abstract Tobacco brown spot is the main fungal disease that endangers the tobacco industry. Biological control is an important means to control plant diseases. Synthetic community has been a research hotspot in the field of biological control because of its good growth-promoting and stress-resistant functions in agricultural production.The rhizosphere soil of healthy tobacco (Nicotiana tabacum) plants in the tobacco field with severe brown spot disease in southern Shaanxi was used as the material, and the strains with significant antagonistic effect on Alternaria alternate were isolated and screened by dilution separation, plate confrontation method and mycelial growth rate method. The growth-promoting strains were screened by measuring the ability of bacteria to produce indole acetic acid (IAA) and growth-promoting pot experiments. The antibacterial strains were screened by measuring the activities of phenylalaninammo-nialyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) defense enzymes in tobacco leaves, and then the selected strains were identified by morphological, physiological and biochemical characteristics and molecular biological methods. Then, the Box-Benhnken response surface method was used to optimize the ratio of bacteria to finally construct a multi-functional biocontrol bacteria group. The screened antagonistic strain Xh628A (GenBank No. PQ269269) and growth-promoting strain X5616A (GenBank No. PQ269268) were identified as Bacillus velezensis, and the induced antibacterial strain Xh649A (GenBank No. PQ269267) was identified as Acinetobacter pittii. The optimal addition ratio of the optimized flora was determined to be Xh628A:Xh649A:X5616A=5.0:1.0:4.5, and the average mycelial inhibition rate of the flora was 77.24 %, compared with the single strain, its growth-promoting and resistance-inducing ability has been improved. This study provides a research basis for the subsequent development of efficient, stable and environmentally friendly multifunctional biological pesticides, and provides a scientific method for the construction and ratio optimization of multifunctional biological flora.
|
Received: 15 July 2024
|
|
|
|
|
[1] 安依凡, 韩猛, 姚峰, 等. 2021. 贝莱斯芽孢杆菌RJW-5-5对烟草赤星病菌的拮抗研究[J]. 安徽农业科学, 49(06): 130-133. (An Y F, Han M, Yao F, et al.2021. Antagonistic study of Bacillus velezensis RJW-5-5 against tobacco brown spot disease[J]. Journal of Anhui Agricultural Sciences, 49(06): 130-133.). [2] 蔡永占, 白涛, 刘冬梅, 等. 2022. 烟草赤星病高效生防内生细菌的分离筛选及发酵培养条件优化[J]. 江苏农业科学, 50(13):129-135. (Cai Y Z, Bai T, Liu D M, et al.2022. Isolation and screening of endophytic bacteria for effective biocontrol of tobacco brown spot and optimization of fermentation and culture conditions[J]. Jiangsu Agricultural Sciences, 50(13): 129-135.) [3] 陈锦华, 刘细寒, 邓丽颖, 等. 2023. 多位点序列和比较基因组学分析对盐单胞菌科菌株JSM 104105的系统发育学研究[J]. 微生物学报, 63(02): 683-699. (Chen J H, Liu X H, Deng L Y, et al.2023. Phylogenetics of Halomonadaceae strain JSM 104105 based on multilocus sequence analysis and comparative genomics analysis[J]. Acta Microbiologica Sinica, 63(02): 683-699.) [4] 陈越, 李虎林, 朱诗苗, 等. 2020. 产吲哚乙酸(IAA)促生菌的分离鉴定及对烟草种子萌发和幼苗生长发育的影响[J]. 作物杂志, (2): 176-181. (Chen Y, Li H L, Zhu S M, et al. 2020. Isolation and identification of IAA-producing rhizobacteria and its effects on seed germination and seedling growth of tobacco[J]. Crops, (2): 176-181.) [5] 陈志谊, 刘邮洲, 刘永锋, 等. 2005. 拮抗细菌菌株之间的互作关系及其对生物防治效果的影响[J]. 植物病理学报, (06): 539-544. (Chen Z Y, Liu Y Z, Liu Y F, et al. 2005. Compatibility between antagonistic bacterial strains and biocontrol efficacy by different bacterial combinations against Fusarium wilt of vegetables[J]. Acta Phytopathologica Sinica, (06): 539-544.) [6] 程宇, 石玉节, 张甜, 等. 2023. 山西省部分地区猪源不动杆菌分子鉴定及其耐药性分析[J]. 中国兽医学报, 43(11): 2251-2260, 2367. (Cheng Y, Shi Y J, Zhang T, et al.2023. Molecular identification and drug resistance analysis of Acinetobacter from pigs in some areas of Shanxi province[J]. Chinese Journal of Veterinary Science, 43(11): 2251-2260, 2367.) [7] 东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册[M]. 科学出版社, 北京. pp. 370-398. (Dong X Z, Cai M Y.2001. Handbook for Identification of Common Bacterial Systems[M]. Science Press, Beijing. pp. 370-398.) [8] 黄佳城, 张瑷珲, 付友思, 等. 2022. 功能性菌群构建的研究进展[J]. 合成生物学, (1): 155-167. (Huang J C, Zhang A H, Fu Y S, et al. 2022. Research progress in construction of functional microbial communities[J]. Synthetic Biology Journal, (1): 155-167.) [9] 李梅云, 祝明亮. 2007. 烟草赤星病菌对菌核净的抗药性测定[J]. 西南农业学报, (03): 412-416. (Li M Y, Zhu M L. 2007. Determination of dimethachlon resistance in Alternaria alternata[J]. Southwest China Journal of Agricultural Sciences, (03): 412-416.) [10] 李树瑶. 2022. 不同互作关系合成微生物群落构建及应用[D]. 博士学位论文, 浙江大学, 导师: 程磊, pp. 6-18. (Li S Y.2022. Synthetic microbial consortia with programmable ecological interactions: Construction and application[D]. Thesis for Ph.D., Zhejiang University, Supervisor: Cheng L, pp. 6-18). [11] 林波. 2022. 蚯蚓粪中烟草赤星病拮抗菌的筛选、防效验证及发酵条件优化[D]. 硕士学位论文, 西北农林科技大学, 导师: 张立新, pp. 26-28. (Lin B.2022. Screening, control effect and optimization condition of antagonistic bacterial strains against Alternaria alternata in vermicompost[D]. Thesis for M.S., Northwest A&F University, Supervisor: Zhang LX, pp. 61-69) [12] 刘芳, 黎妍妍, 陈伟, 等. 2023. 响应面法优化贝莱斯芽胞杆菌YC11的液体发酵培养基[J]. 中国生物防治学报, 39(04): 915-923. (Liu F, Li YY, Chen W, et al.2023. Optimization of fermentation medium for spore production by Bacillus velezensis YC11 through response-surface methodology[J]. Chinese Journal of Biological Control, 39(04): 915-923.) [13] 刘天波, 赵誉强, 滕凯, 等. 2022. 烟草疫霉拮抗细菌B44R-1的筛选及其生防效果[J]. 中国生物防治学报, 38(06):1545-1552. (Liu T B, Zhao Y Q, Teng K, et al.2022. Screening and biocontrol effect of antagonistic bacterium B44R-1 against Phytophthora parasitica[J]. Chinese Journal of Biological Control, 38(06): 1545-1552.) [14] 罗政刚, 车永梅, 刘知祥, 等. 2024. 拮抗菌株混合发酵液对烟草黑胫病和青枯病的防治作用[J]. 青岛农业大学学报(自然科学版) ,1(11): 1-8. (Luo Z G, Che Y M, Liu Z X, et al.2024. Control effects of mixed fermentation liquid of antibacteria strains against tobacco black shank and bacterial wilt[J]. Journal of Qingdao Agricultural University (Natural Science), 1(11): 1-8.) [15] 潘超, 过志鹏, 付贵萍, 等. 2023. 好氧反硝化聚磷菌的筛选及菌群构建优化[J]. 微生物学通报, 50(11): 4751-4769. (Pan C, Guo Z P, Fu G P, et al.2023. Screening and combination of aerobic denitrifying phosphorus-accumulating bacteria for waste removal[J]. Microbiology China, 50(11): 4751-4769.) [16] 钱发聪, 李梦娇, 张廷金, 等. 2021. 哈茨木霉菌LTR-2对烟草赤星病的田间防治效果[J]. 昆明学院学报, 43(3):20-23. (Qian F C, Li M J, Zhang T J, er al.2021. Field control effect on tobacco brown spot of Trichoderma harzianu LTR-2[J]. Journal of Kunming University, 43(3): 20-23.) [17] 王佩, 欧雅姗, 张强, 等. 2018. 烟草赤星病研究进展[J]. 安徽农业科学, 46(21): 33-36. (Wang P, Ou Y S, Zhang Q, et al.2018. Research advance in tobacco brown spot[J]. Journal of Anhui Agricultural Sciences, 46(21): 33-36.) [18] 王文丽, 金涵, 从炳成, 等. 2022. 复合微生物菌剂对番茄青枯病的生防效应[J]. 南京农业大学学报, 45(06): 1174-1182. (Wang W L, Jin H, Cong B C, et al.2022. Biocontrol effect of composite microbial agent on tomato bacterial wilt[J]. Journal of Nanjing Agricultural University, 45(06): 1174-1182.) [19] 翁凌胤, 栾冬冬, 周大朴, 等. 2024. 利用合成菌群促进作物健康: 进展与展望[J]. 应用生态学报, 35(03): 847-857. (Weng L Y, Luan D D, Zhou D P, et al.2024. Improving crop health by synthetic microbial communities: Progress and prospects[J].Chinese Journal of Applied Ecology, 35(03): 847-857.) [20] 吴晓婷, 赖荣泉, 张帆, 等. 2022. 大蒜根系分泌物对烟草青枯病的影响[J]. 中国生物防治学报, 38(06): 1592-1597. (Wu X T, Lai R Q, Zhang F, et al.2022. Effects of garlic root exudates on Ralstonia solanacearum[J]. Chinese Journal of Biological Control, 38(6): 1592-1597.) [21] 肖志鹏, 李玲玲, 母婷婷, 等. 2022. 烟草赤星病菌拮抗菌解淀粉芽胞杆菌YW-2-6鉴定及生防效果[J]. 中国生物防治学报, 38(06): 1598-1607. (Xiao Z P, Li L L, Mu T T, et al.2022. Identification and biocontrol effect of Bacillus amyloliquefaciens YW-2-6 against Alternaria alternata[J]. Chinese Journal of Biological Control, 38(06): 1598-1607.) [22] 杨德政, 孙光军, 桑维钧. 2021. 烟草赤星病拮抗菌的筛选、鉴定及其培养基优化[J]. 湖北农业科学, 60(S1): 173-177. (Yang D Z, Sun G J, Sang W J.2021. Screening and identification of antagonistic bacteria against tobacco brown spot and media optimization[J]. Hubei Agricultural Sciences, 60(S1): 173-177.) [23] 姚杰, 陈海宁, 王雪景, 等. 2023. 胶东地区3种土地利用类型土壤中农药残留监测与分析[J]. 农药学学报, 25(06): 1370-1380. (Yao J, Chen H N, Wang X J, et al.2023. Monitoring and analysis of pesticide residues in three different land use types of soil in Jiaodong area[J]. Chinese Journal of Pesticide Science, 25(6): 1370-1380.) [24] 叶盛茂. 2010. 烟草赤星病的发生规律及防治技术[J]. 福建农业, (10): 8-9. (Ye S M. 2010.Tobacco brown spot occurrence pattern and control technology[J]. FuJian Agriculture, (10): 8-9.) [25] 张家美. 2018. 中草药提取物对烟草赤星病的诱导抗性研究[D]. 硕士学位论文, 贵州大学, 导师: 桑维钧, pp. 14-16. (Zhang J M.2018. Study on induced resistance of tobacco against Alternaria alternata by Chinese herbal extract[D]. Thesis for M.S., Guizhou University, Supervisor: Sang W J, pp. 14-16.) [26] 张娇, 陈江峰, 陈奕璇, 等. 2023. 合成功能菌群的构建及其工程化应用[J]. 生物工程学报, 39(06): 2517-2545. (Zhang J, Chen J F, Chen Y X, et al.2023. Engineering microbial consortia through synthetic biology approach[J]. Chinese Journal of Biotechnology, 39(06): 2517-2545.) [27] 张万良, 翟争光, 谢扬军, 等. 2011. 烟草赤星病研究进展[J]. 江西农业学报, 23(01): 118-120. (Zhang W L, Zhai Z G, Xie Y J, et al.2011. Research advance in tobacco brown spot[J]. Acta Agriculturae Jiangxi, 23(01): 118-120.) [28] 钟钏, 高峻, 凌爱芬, 等. 2021. 烟草根际促生菌的分离鉴定及抗菌、促生特性[J]. 四川农业科技, (11): 58-62. (Zhong C, Gao J, Ling A F, et al. 2021. Isolation and identification of tobacco rhizosphere growth-promoting bacteria and their antibacterial and growth-promoting characteristics[J]. Sichuan Agricultural Science and Technology, (11): 58-62.) [29] 周芳芳, 李晓婷, 汤利. 2023. 合成菌群促生抗逆功能的研究进展[J]. 土壤, 55(06): 1170-1175. (Zhou F F, Li X T, Tang L.2023. Growth promotion and stress resistance of synthetic microbial community: A review[J]. Soils, 55(06): 1170-1175.) [30] 朱尊权. 1988. 中国的烟草事业—传统与创新[J]. 烟草科技, (06): 2-6. (Zhu Z Q. 1988. Tobacco in China-tradition and innovation[J]. Tobacco Science & Technology, (06): 2-6.) [31] Ahsan Taswar, Chen J G; Wu Y H,et al.2017. Application of response surface methodology for optimization of medium components for the production of secondary metabolites by Streptomyces diastatochromogenes KX852460[J]. AMB Express, 7(1): 96. [32] Chen R, Dou J.2016. Biofuels and bio-based chemicals from lignocellulose: Metabolic engineering strategies in strain development[J]. Biotechnology Letters, 38(2): 213-221. [33] Chen Y H, Lu M H, Guo D S, et al.2019. Antifungal effect of magnolol and honokiol from magnolia officinalis on Alternaria alernata causing tobacco brown spot[J]. Molecues, 24(11): 2140-2153. [34] Chuan Y X, Gao F L, Jakovlić I, et al.2023. Using PhyloSuite for molecular phylogeny and tree-based analyses[J]. iMeta, 2(1): 1-42. [35] Chun J, Bae KS.2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences[J]. Antonie van Leeuwenhoek, 78(2): 123-127. [36] Glickmann E, Dessaux Y.1995. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 61(2): 793-796. [37] Hu J, Wei Z, Friman V P, et al.2016. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 7(6): e01790-e01716. [38] Khuri AI, Mukhopadhyay S.2010. Response surface methodology[J]. WIREs Computational Statistics, 2(2): 128-149. [39] Li Z F, Bai X L,Jiao S, et al.2021. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance[J]. Microbiome, 9(1): 217. [40] Wang H T, Wu C F, Zhang H Q, et al.2022. Characterization of the belowground microbial community and co-occurrence networks of tobacco plants infected with bacterial wilt disease[J].World Journal of Microbiology and Biotechnology, 38(9): 155. [41] Xie Z, LI M, Wang D, et al.2022. Biocontrol efficacy of Bacillus siamensis LZ88 against brown spot disease of tobacco caused by Alternaria alternata[J]. Biological Control: Theory and Applicationin Pest Management, 154: 104508. [42] Zaid D S, Cai S Y, Hu C, et al.2022. Comparative genome analysis reveals phylogenetic identity of Bacillus velezensis HNA3 and genomic insights into its plant growth promotion and biocontrol effects[J]. Microbiology Spectrum, 10(1): e0216921. |
|
|
|