|
|
Genetic Characteristics Analysis of Plant Height, Panicle Weight and Grain Weight of Foxtail Millet (Setaria italica) in Multiple Environments |
LI Yan-Fang1,2, LIU Yan1,2, DU Xiao-Fen1, WANG Zhi-Lan1,2, HAN Kang-Ni1, LIAN Shi-Chao1, LI Yu-Xin1, ZHANG Lin-Yi1, WANG Jun1,2,* |
1 Millet Research Institute, Shanxi Agricultural University / Hou Ji Laboratory in Shanxi Province, Changzhi 046011, China; 2 College of Agriculture, Shanxi Agricultural University, Taigu 030801, China |
|
|
Abstract The primary objectives of high-yield breeding for foxtail millet (Setaria italica) encompass the optimization of plant height, enhancement of panicle weight, and augmentation of panicle grain weight. In order to investigate the genetic variation of plant height, panicle weight and panicle grain weight of foxtail millet, this study utilized 'Aininghuang' as the maternal parent and 'Jingu 21' as the paternal parent to established a recombinant inbred line (RIL) population, and the RIL population was cultivated at 7 locations over a span of 3 years (2019~2021) in Shanxi province, R-based software package SEA v2.0 was employed to analyze the main gene + multi-gene hybrid genetic model for RIL population traits such as plant height, panicle weight and grain weight. The results demonstrated significant correlations among plant height, panicle weight and grain weight, and the correlation coefficient between panicle weight and grain weight was 0.98 (P≤0.001). The optimal model for plant height was determined to be PG-AI with the polygenic heritability of 97.56%; Similarly, the optimal model for panicle weight was identified as PG-A with the polygenic heritability of 84.04%, primarily influenced by additive effects resulting in an additive effect value of -2.95 indicating negative genetic impact; The most suitable model for grain weight was MX2-ED-A, which was controlled by 2 dominant epistatic major genes along with additive polygenes contributing to mixed inheritance pattern, with major gene heritability accounted for 62.53% and polygene contributed approximately 50.52%, the additive effect of the second major gene was dominant, and the additive epistatic interaction effect value was -11.50, showed a negative genetic effect. The optimal genetic models of plant height and panicle weight in foxtail millet were similar, exhibited a polygenic nature with substantial heritability and little environmental influence; In contrast, the inheritance of grain weight was primarily controlled by a combination of major gene effects and polygenic factors. This study offers valuable insights for the genetic enhancement and precise mapping of genes associated with plant height, panicle weight, and grain weight.
|
Received: 09 August 2024
|
|
Corresponding Authors:
* 128wan@163.com
|
|
|
|
[1] 曹齐卫, 张允楠, 王永强, 等. 2018. 黄瓜节间长的主基因+多基因混合遗传模型分析[J]. 农业生物技术学报, 26(2): 205-212. (Cao Q W, Zhang Y N, Wang Y Q, et al.2018. Genetic analysis of internode length using mixed major-gene plus polygene inheritance model in Cucumis sativus[J]. Journal of Agricultural Biotechnology, 26(2): 205-212.) [2] 常丹丹, 金星娜, 田新会, 等. 2021. 小黑麦穗部性状的主基因+多基因混合遗传模型分析[J]. 草原与草坪, 41(4): 56-73. (Chang D D, Jin X N, Tian X H, et al.2021. Genetic analysis on the mixed model of major gene plus polygenes for the panicle related traits in triticale[J]. Grassland and Turf, 41(4): 56-73.) [3] 陈慢慢, 田翔, 陈凌, 等. 2023. 谷子重组自交系主要农艺性状和品质性状相关分析[J]. 植物遗传资源学报, 24(01): 172-180. (Chen M M, Tian X, Chen L, et al.2023. Correlation analysis of key agronomic traits and food quality using a foxtail millet recombinant inbred lines[J]. Journal of Plant Genetic Resources, 24(01): 172-180.) [4] 崔月, 陆建农, 施玉珍, 等. 2019. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 45(7): 1111-1118. (Cui Y, Lu J N, Shi Y Z, et al.2019. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model[J]. Acta Agronomica Sinica, 45(7): 1111-1118.) [5] 刁现民. 2022. 育种创新造就谷子种业新发展[J]. 中国种业, (4): 4-7. (Diao X M. 2022. Breeding innovation creates new development of millet seed industry[J]. China Seed Industry, (4): 4-7.) [6] 冯云超, 余志江, 霍仕平, 等. 2019. 玉米雄穗抽雄至散粉间隔时间主基因+多基因遗传模型及遗传效应[J].玉米科学, 27(4): 1-8. (Feng Y C, Yu Z J, Huo S P, et al.2019. Genetic effects of tassel-anthesis interval using mixture model of major gene plus polygene in maize[J]. Journal of Maize Sciences, 27(4): 47-58.) [7] 盖钧镒. 2005. 植物数量性状遗传体系的分离分析方法研究[J]. 遗传, 27(1): 130-136. (Gai J Y.2005. Segregation analysis of genetic system of quantitative traits in plants[J]. Hereditas, 27(1): 130-136.) [8] 郭淑青, 宋慧, 杨清华, 等. 2021. 谷子株高及穗部性状主基因+多基因混合遗传模型分析[J]. 中国农业科学, 54(24): 5177-5193. (Guo S Q, Song H, Yang Q H, et al.2021. Analyzing genetic effects for plant height and panicle traits by means of the mixed inheritance model of major gene plus polygene in foxtail millet[J]. Scientia Agricultura Sinica, 54(24): 5177-5193.) [9] 贾冠清, 刁现民. 2022. 中国谷子种业创新现状与未来展望[J]. 中国农业科学, 55(4): 653-665. (Jia G Q, Diao X M.2022. Current status and perspectives of innovation studies related to foxtail millet seed industry in China[J]. Scientia Agricultura Sinica, 55(4): 653-665.) [10] 贾小平, 李剑峰, 赵渊, 等. 2019. 谷子抽穗期与农艺性状的相关与回归分析[J]. 植物遗传资源学报, 20(3):634-645. (Jia X P, Li J F, Zhao Y, et al.2019. Correlation and regression analysis between heading date and agronomic traits in foxtail millet[J]. Journal of Plant Genetic Resources, 20(3): 634-645.) [11] 贾小平, 张博, 董志平, 等. 2018. 海南短日照条件下谷子穗部性状的全基因组关联分析[J]. 河南农业科学, 47(9): 33-40. (Jia X P, Zhang B, Dong Z P, et al.2018. Genome-wide association analysis of panicle traits of foxtail millet under Hainan short-day condition[J]. Journal of Henan Agricultural Sciences, 47(9): 33-40.) [12] 蒋锋, 闫艳, 黄正刚, 等. 2023. 糯玉米种子活力性状的主基因+多基因混合遗传分析[J]. 西北农林科技大学学报(自然科学版), 51(02): 22-29. (Jiang F, Yan Y, Huang Z G, et al.2023. Mixed major genes and polygenes in heritance analyses for seed vigor traits in waxy corn[J]. Journal of Northwest A&F University (Natural Science Edition), 51(02): 22-29.) [13] 李剑峰, 张博, 全建章, 等. 2019. 基于SSR标记的谷子主要农艺性状关联位点检测及等位变异分析[J]. 中国农业科学, 52(24): 4453-4472. (Li J B, Zhang B, Quan J Z, et al.2019. Associated loci detection and elite allelic variations analysis of main agronomic traits in foxtail millet (Setaria italica L.) based on SSR markers[J]. Scientia Agricultura Sinica, 52(24): 4453-4472.) [14] 李顺国, 刘斐, 刘猛, 等. 2021. 中国谷子产业和种业发展现状与未来展望[J]. 中国农业科学, 54(3): 459-470. (Li S G, Liu F, Liu M, et al.2021. Current status and future prospective of foxtail millet production and seed industry in China[J]. Scientia Agricultura Sinica, 54(3): 459-470.) [15] 刘鹏飞, 周富亮, 张金钰, 等. 2020. 甜玉米茎秆强度相关性状的数量性状基因座定位[J]. 植物保护学报, 47(05): 1030-1037. (Liu P F, Zhou F L, Zhang J Y, et al.2020. QTL mapping of stem strength related traits in sweet corn[J]. Journal of Plant Protection, 47(5): 1030-1037.) [16] 刘天鹏. 2022. 谷子农艺及产量相关性状QTL定位和候选基因鉴定[D]. 博士学位论文, 西南大学, 导师: 张正圣, pp. 34-36. (Liu T P.2022. QTL mapping and candidate gene identification for agronomic and yield-related traits in foxtail millet (Setaria italica))[D]. Thesis for Ph.D., Southwest University, Supervisor: Zhang Z S, pp. 34-36.) [17] 刘莹, 盖钧镒, 王永军, 等. 2005. 大豆耐旱种质鉴定和相关根系性状的遗传与QTL定位[J]. 遗传学报, 13(8): 855-863. (Liu Y, Gai J Y, Wang Y J, et al.2005. Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean (Glycine max (L.) Merr.)[J]. Acta Genetica Sinica, 13(8): 855-863.) [18] 陆平. 2006. 谷子种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, pp. 47-49. (LU P.2006. Descriptors and Data Standard for Foxtail Millet Germplasm Resources[M]. Beijing: China Agriculture Press, pp. 47-49.) [19] 吕建珍, 王宏勇, 任莹, 等. 2023. 不同生态区谷子品种表型鉴定及SSR遗传多样性分析[J]. 核农学报, 37(3): 0471-0482. (Lyu J Z, Wang H Y, Ren Y, et al.2023. Phenotypic evaluation and SSR genetic diversity analysis of foxtail millet cultivars in different ecological regions[J]. Journal of Nuclear Agricultural Sciences, 37(3): 0471-0482.) [20] 齐振宇, 李俊星, 邹晓霞, 等. 2015. 甜瓜株型性状的遗传分析[J]. 农业生物技术学报, 23(3): 302-310. (Qi Z Y, Li J X, Zou X X, et al.2015. Genetic analysis of plant architecture traits inmelon (Cucumis melo L.)[J]. Journal of Agricultural Biotechnology, 23(3): 302-310.) [21] 屈洋, 宋慧, 刘洋, 等. 2018. 谷子新品种(系)主要农艺性状及茎杆特性的遗传多样性分析[J]. 干旱地区农业研究, 36(3): 51-58. (Qu Y, Song H, Liu Y, et al.2018. Genetic diversity of agronomic traits and node characters in foxtail millet (Setaria italica Beauv.)[J]. Agricultural Research in the Arid Areas, 36(3): 51-58.) [22] 宋慧, 臧贺藏, 李国强, 等. 2022. 基于谷子种质资源表型性状构建骨干种质库[J]. 中国农业大学学报, 27(12): 102-115. (Song H, Zang H C, Li G Q, et al.2022. Construction of backbone germplasm bank based on the phenotypic traits of foxtail millet[J]. Journal of China Agricultural University, 27(12): 102-115.) [23] 王靖天, 张亚雯, 杜应雯, 等. 2022. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 48(6): 1416-1424. (Wang J T, Zhang Y W, Du Y W, et al.2022. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits[J]. Acta Agronomica Sinica, 48(6): 1416-1424.) [24] 王小勤. 2017. 谷子高密度遗传图谱构建及产量和农艺性状QTL分析[D]. 硕士学位论文, 西南大学, 导师: 张建, pp. 39-46. (Wang X Q.2017. Construction of high-density genetic map and QTL analysis of yield and agronomic traits in foxtail millet[D]. Thesis for M. S., Southwest University, Supervisor: Zhang J, pp. 39-46.) [25] 王晓宇, 刁现民, 王节之, 等. 2013. 谷子SSR分子图谱构建及主要农艺性状QTL定位[J]. 植物遗传资源学报, 14(5): 871-878. (Wang X Y, Diao X M, Wang J Z, et al.2013. Construction of genetic map and QTL analysis of some main agronomic traits in millet[J]. Journal of Plant Genetic Resources, 14(5): 871-878.) [26] 咸丰, 张勇, 马建祥, 等. 2011. 野生甜瓜“云甜-930”抗白粉病主基因+多基因遗传分析[J]. 中国农业科学, 44(7): 1425-1433. (Xian F, Zhang Y, Ma J X, et al.2011. Genetic analysis of resistant to powdery mildew with mixed model of major gene plus polygene in wild melon material“Yuntian-930”[J]. Scientia Agricultura Sinica, 44(7): 1425-1433.) [27] 解慧芳, 魏萌涵, 宋中强, 等. 2024. 谷子主要性状主基因多基因混合遗传模型分析[J]. 作物杂志, 221(4): 82-89. (Xie H F, Wei M H, Song Z Q, et al.2023. Analyzing genetic effects for main traits by means of the mixed inheritance model of major gene plus polygene in foxtail millet[J]. Crops, 221(4): 82-89.) [28] 解松峰, 吉万全, 张耀元, 等. 2020. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 46(3): 365-384. (Xie S F, Ji W Q, Zhang Y Y, et al.2020. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat[J]. Acta Agronomica Sinica, 46(3): 365-384.) [29] 薛亚鹏, 辛旭霞, 王若楠, 等. 2024. 国内外谷子资源农艺、品质性状差异分析以及遗传多样性研究[J]. 作物学报, 50(10): 2468-2482. (Xue Y P, Xin X X, Wang R N, et al.2024. Analysis of agronomic,quality traits and genetic diversity of domestic and foreign foxtail millet resources[J]. Acta Agronomica Sinica, 50(10): 2468-2482.) [30] 薛云云, 田跃霞, 张鑫, 等. 2023. 利用花生RIL群体进行芽期耐寒性遗传特性分析[J]. 核农学报, 37(4): 0690-0698. (Xue Y Y, Tian Y X, Zhang X, et al.2023. Genetic analysis of cold tolerance at germination stage by RIL population of peanut[J]. Journal of Nuclear Agricultural Sciences, 37(4): 0690-0698.) [31] 杨朋娟, 张世文, 王振山, 等. 2022. 多环境评估谷子资源主要农艺性状遗传参数[J]. 植物遗传资源学报, 23: 1046-1054. (Yang P J, Zhang S W, Wang Z S, et al.2022. Genetic parameters estimation of main agronomical traits of foxtail millet germplasm resources under multiple environments[J]. Journal of Plant Genetic Resources, 23: 1046-1054.) [32] 张玉梅, 蓝新隆, 滕振勇, 等. 2022. 大豆鲜籽粒可溶性糖含量的主基因+多基因遗传分析[J]. 大豆科学, 41(5): 520-525. (Zhang Y M, Lan X L, Teng Z Y, et al.2022. Genetic analysis of fresh seeds soluble sugar content in soybean based on a mixed model of major-genes plus polygenes[J]. Soybean Science, 41(5): 520-525.) [33] Han K N, Wang Z L, Shen L, et al.2024. Mapping of dynamic quantitative trait loci for plant height in a RIL population of foxtail millet (Setaria italica L.)[J]. Frontiers in Plant Science, 15(7): 192-209. [34] He Q, Zhi H, Tang S, et al.2021. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map[J]. Theoretical and Applied Genetics, 134(10): 557-572. [35] Liu H X, Zhang X, Shang Y P, et al.2024. Genome-wide association study reveals genetic loci for ten trace elements in foxtail millet (Setaria italica)[J]. Theoretical and Applied Genetics, 137(8): 186-201. [36] Wang H, Tang S, Zhi H, et al.2022. The boron transporter Si BOR1 functions in cell wall integrity, cellular homeostasis, and panicle development in foxtail millet[J]. The Crop Journal, 10(2): 342-353. [37] Wang Z L, Wang J, Peng J X, et al.2019. QTL mapping for 11 agronomic traits based on a genome-wide Bin-map in a large F2 population of foxtail millet (Setaria italica (L.) P. Beauv)[J]. Molecular Breeding, 39(18): 1-13. [38] Yao D, Zhao Q, Li T, Wang J, et al.2022. Genetic analysis and quantitative trait locus mapping using the major gene plus polygene model for soybean [Glycine max (L.)Merr.][J]. Main Quality Trait Legume Research-An International Journal, 46(1): 214-236. [39] Zhi H, He Q, Tang S, et al.2021. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica)[J]. Theoretical and Applied Genetics, 134(9): 124-138. |
[1] |
SHI Wei-Ping, ZHANG Xin, ZHAO Yuan, LIU Min, DAI Ke-li, ZHANG Ai-Ying, GUO Er-Hu, SHI Guan-Yan, GUO Jie. Identification and Tissue Expression Pattern Analysis of KNOX Gene Family in Setaria italica[J]. 农业生物技术学报, 2024, 32(8): 1742-1752. |
|
|
|
|