|
|
Construction of DAVID Technology for High-throughput and Low-cost Detection of Bovine (Bos taurus) MSTN Gene Mutations |
PEI Dong-Chao, HAI Chao, ZHAO Chun-Sheng, ZHANG Li-Guo, WU Di, WANG De-Zheng, ZHANG Xin-Yi, YANG Lei*, LI Guang-Peng* |
State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China |
|
|
Abstract Myostatin (MSTN) is a negative regulator of skeletal muscle growth and development, and mutations in the MSTN gene can promote muscle development in animals. Currently, Sanger sequencing technology is the classic method for detecting MSTN gene mutations, but this method has the disadvantages of low detection throughput, low visualisation of mutation information and high detection cost. In this study, MSTN gene mutations in 96 cattle (Bos taurus) could be detected at one time by using next-generation sequencing technology with a specific Barcode sequence designed. In addition, based on the Barcode sequences in the sequencing Fastq result files, the related data analysis DAVID (detect and visualize insertion-deletion) software was developed using asynchronous threading and concurrent algorithms. Using DAVID software, the sequencing data of 96 mixed samples were split one by one and compared with amplicon sequence, and finally the graphical and statistical information of MSTN gene mutation was obtained. Using DAVID technology, 96 Mongolian cattle were examined, and found that 1 head of cattle was heterozygous for 11 bp deletion of the MSTN gene, and the remaining 95 head of cattle were wild-type, and the 11 bp heterozygous deletion was further verified by Sanger sequencing. This study constructed a high-throughput technical system for detecting bovine MSTN gene mutations, and provides technical support for genetic improvement and breeding of cattle.
|
Received: 25 March 2024
|
|
Corresponding Authors:
* mrknowall@126.com; gpengli@imu.edu.cn
|
|
|
|
[1] 高丽, 杨磊, 李光鹏. 2021. Myostatin基因突变激发骨骼肌发育机制研究进展[J]. 生物技术进展, 11(04): 476-482. (Gao L, Yang L, Li G P.2021. Research progress on the mechanism of skeletal muscle development stimulated by Myostatin gene mutation[J]. Current Biotechnology, 11(04): 476-482.) [2] 谷明娟, 罗荣松, 高丽等. 2020. 全基因组重测序技术揭示蒙古牛无角性状变异[J].农业生物技术学报, 28(11):1960-1969. (Gu M J, Luo R S, Gao L, et al.2020. Whole-genome resequencing reveals variant associated with polled traits in mongolia cattle (Bos taurus)[J]. Journal of Agricultural Biotechnology, 28(11):1960-1969.) [3] 郭宏, 吕洋, 陈建兴, 等. 2014. 肉牛分子育种研究进展与展望[J]. 中国农业科技导报, 16(01): 24-31. (Guo H, Lv Y, Chen J X, et al.2014. Recent progress and trend of molecular breeding in beef cattle[J]. Journal of Agricultural Science and Technology, 16(01): 24-31.) [4] 胡家, 杨颖, 李蕾, 等. 2019. 用于质谱分析的细胞总蛋白三种酶切方法比较[J]. 山西医科大学学报, 50(06): 848-853. (Hu J, Yang Y, Li L, et al.2019. Comparison of preparation of total cell protein sample for MS analysis by three digestion methods[J]. Journal of Shanxi Medical University, 50(06): 848-853.) [5] 李光鹏, 白春玲, 魏著英, 等. 2020. 黄牛Myostatin 基因编辑研究[J]. 内蒙古大学学报(自然科学版), 51(1): 12-32. (Li G P, Bai C L, Wei Z Y, et al.2020. Study of Myostatin gene-editing in Chinese yellow cattle[J]. Journal of Inner Mongolia University (Natural Science Edition), 51(1): 12-32.) [6] 李光鹏, 张立. 2017. 中国转基因家畜最新研究进展[J]. 内蒙古大学学报(自然科学版), 48(04): 346-355. (Li G P, Zhang L.2017. The most recent progresses in the domestic animal transgenic studies in China[J]. Journal of Inner Mongolia University (Natural Science Edition), 48(04): 346-355.) [7] 佟彬, 张立, 李光鹏. 2017. 中国肉牛分子与基因修饰育种研究进展[J]. 遗传, 39(11): 984-1015. (Tong B, Zhang L, Li G P.2017. Progress in the molecular and genetic modification breeding of beef cattle in China[J]. Hereditas, 39(11): 984-1015.) [8] 魏著英, 白春玲, 李光鹏. 2018. 牛肌肉生长抑制素基因突变的遗传效应与育种应用[J]. 生物技术进展, 8(3): 97-205. (Wei Z Y, Bai C L, Li G P.2018. Genetic effect and breeding application of Myostatin gene mutation in beef cattle[J]. Current Biotechnology, 8(3): 197-205+277.) [9] 谢浩, 赵明, 胡志迪, 等. 2015. DNA测序技术方法研究及其进展[J]. 生命的化学, 35(06): 811-816. (Xie H, Zhao M, Hu Z D, et al.2015. Research of the methods for DNA sequencing technology and its progress[J]. Chemistry of Life, 35(06): 811-816.) [10] 徐疏梅. 2018. 新一代DNA测序技术的应用与研究进展[J]. 徐州工程学院学报(自然科学版), 33(04): 60-64. (Xu S M.2018. Application and research progress of a new generation of DNA sequencing technology[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 33(04): 60-64.) [11] 赵长英, 廖媛, 杨洁珂, 等. 2020. db/db小鼠基因型鉴定方法的比较研究[J]. 重庆医学, 49(20): 3451-3455. (Zhao C Y, Liao Y, Yang J K, et al.2020. Comparative study on identification methods of db/db mice genotypes[J]. Chongqing Medicine, 49(20): 3451-3455.) [12] 张文新, 于婷, 孙楠, 等. 2020. 胎儿染色体非整倍体21三体、18三体和13三体检测试剂盒(高通量测序法)行业标准的制定[J]. 分子诊断与治疗杂志, 12(08): 991-994+1000. (Zhang W X, Yu T, Sun N, et al.2020. Establishment of industry standards for fetal chromosome aneuploidy including trisomy 21,trisomy18 and trisomy 13 (Next-Generation Sequencing)[J]. Journal of Molecular Diagnostics and Therapy, 12(08): 991-994+1000.) [13] 朱琳, 谷明娟, 王丽娜, 等. 2022. Myostatin基因编辑牛骨骼肌组织学结构与转录组分析[J]. 农业生物技术学报, 30(10): 1903-1912. (Zhu L, Gu M J, Wang L N, et al.2022. Analysis of skeletal muscle structure and transcriptome by Myostatin gene editing[J]. Journal of Agricultural Biotechnology, 30(10): 1903-1912.) [14] Aiello D, Patel K, Lasagna E.2018. The Myostatin gene: An overview of mechanisms of action and its relevance to livestock animals[J]. Animal Genetics, 49(6): 505-519. [15] Bouyer C, Forestier L, Renand G,et al.2014. Deep intronic mutation and pseudo exon activation as a novel muscular hypertrophy modifier in cattle[J]. PLOS ONE, 9(5):e97399. [16] Clop A, Marcq F, Takeda H, et al.2006. A mutation creating a potential illegitimate microRNA target site in the Myostatin gene affects muscularity in sheep[J]. Nature Genetics, 38(7): 813-818. [17] Crossley B M, Bai J, Glaser A, et al.2020. Guidelines for Sanger sequencing and molecular assay monitoring[J]. Journal of Veterinary Diagnostic Investigation, 32(6):767-775. [18] Das A, Panitz F, Gregersen VR, et al.2015. Deep sequencing of Danish Holstein dairy cattle for variant detection and insight into potential loss-of-function variants in protein coding genes[J]. BMC Genomics, 16: 1043. [19] Deng B, Zhang F, Wen J, et al.2017. The function of myostatin in the regulation of fat mass in mammals[J]. Nutrition & Metabolism, 14(1): 29. [20] Dierks C, Eder J, Glatzer S, et al.2015. A novel Myostatin mutation in double-muscled German Gelbvieh[J]. Animal Genetics, 46(1): 91-92. [21] Esmailizadeh A K, Bottema C D, Sellick G S, et al.2008. Effects of the Myostatin F94L substitution on beef traits[J]. Journal of Animal Science, 86(5): 1038-1046. [22] Fiems L O.2012. Double muscling in cattle: Genes, husbandry, carcasses and meat[J]. Animals, 2: 472-506. [23] Fraiture M A, D'aes J, Guiderdoni E, et al.2023. Targeted high-throughput sequencing enables the detection of single nucleotide variations in CRISPR/Cas9 gene-edited organisms[J]. Foods, 12(3): 455. [24] Frazer K A, Eskin E, Kang H M, et al.2007. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains[J]. Nature, 448(7157): 1050-1053. [25] Kambadur R, Sharma M, Smith T P L, et al.1997. Mutations in Myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle[J]. Genome Research, 7: 910-915. [26] Li X L, Wu Z L, Liu Z Z, et al.2006. SNP identification and analysis in part of intron 2 of goat MSTN gene and variation within and among species[J]. The Journal of Heredity. 97(3): 285-289. [27] Mcpherron A C, Lee S J.1997. Double muscling in cattle due to mutations in the Myostatin gene[J]. Proceedings of the National Academy of Sciences of the USA, 94(23): 12457-12461. [28] Metzker M L.2010. Sequencing technologies-the next generation[J]. Nature Reviews, Genetics, 11(1): 31-46. [29] Mosher D S, Quignon P, Bustamante C D, et al.2007. A mutation in the Myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs[J]. PLOS Genetics, 3(5): e79. [30] Phocas F.2009. Genetic analysis of breeding traits in a Charolais cattle population segregating an inactive Myostatin allele[J]. Journal of Animal Science, 87(6): 1865-1871. [31] Proudfoot C, Carlson D F, Huddart R, et al.2015. Genome edited sheep and cattle[J]. Transgenic Research, 24(1): 147-153. [32] Sanger F, Nicklen S, Coulson A R.1977. DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences of the USA, 74(12): 5463-5467. [33] Sharma M, Mcfarlane C, Kambadur R, et al.2015. Myostatin: Expanding horizons[J]. IUBMB Life, 67(8): 589-600. [34] Stranneheim H, Lundeberg J.2012. Stepping stones in DNA sequencing[J]. Biotechnology Journal, 7(9): 1063-1073. |
|
|
|